Biometry, Distribution and Genetic Characterization of Blue Jack Mackerel Trachurus Picturatus (Bowdich, 1825), a Rare Pelagic Fish Species in the Adriatic Sea

Total Page:16

File Type:pdf, Size:1020Kb

Biometry, Distribution and Genetic Characterization of Blue Jack Mackerel Trachurus Picturatus (Bowdich, 1825), a Rare Pelagic Fish Species in the Adriatic Sea diversity Article Biometry, Distribution and Genetic Characterization of Blue Jack Mackerel Trachurus picturatus (Bowdich, 1825), a Rare Pelagic Fish Species in the Adriatic Sea Barbara Zorica , Ivana Bušeli´c* , Vanja Cikešˇ Keˇc,Vedran Vuletin, Ivana Lepen Plei´c, Igor Isajlovi´c,Ivana Radoni´cand Nedo Vrgoˇc Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, 21000 Split, Croatia; [email protected] (B.Z.); [email protected] (V.C.K.);ˇ [email protected] (V.V.); [email protected] (I.L.P.); [email protected] (I.I.); [email protected] (I.R.); [email protected] (N.V.) * Correspondence: [email protected]; Tel.: +385-21-408009 Received: 26 October 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: The blue jack mackerel Trachurus picturatus (Bowdich, 1825) specimens (N = 155) were collected during the MEDITS survey, done along the eastern side, precisely, of the Croatian fishing ground in July 2018. Biometrical analysis of ten morphometric and five meristic characters, as well as genetic analysis proved that the collected specimens were blue jack mackerel. The total length (TL) and weight (W) of all observed specimens ranged from 9.2 to 33.7 cm (12.15 2.95 cm) and from 5.79 to ± 384.94 g (17.64 39.42 g), respectively. All calculated length–length relationships were linear (r > 0.923). ± Sex was determined only on two larger specimens (28 cm < TL < 32.8 cm), which were females. In the length–weight relationship, positive allometry was established (b = 3.1789). Based on 37 partial cytochrome b sequences, the overall haplotype diversity (h) of 0.812 0.048 and nucleotide diversity ± (π) of 0.0064 0.0007 indicated high levels of haplotype and low nucleotide diversity. The obtained ± sequences were compared to previously published research within the Northeast Atlantic Ocean and the Mediterranean Sea, confirming the absence of genetic structure among these populations. Keywords: central Mediterranean; mitochondrial DNA; morphometry; pelagic fish; phylogeography; Trachurus 1. Introduction Over the years, environmental variables have changed, mostly due to increasing globalisation processes [1]. The modification of those variables directly influenced whole marine ecosystems. Consequently, fish assemblage has either accommodated or transformed. Appearance and increased abundance of new and/or rare species surely affected the structure and functioning of species communities; therefore, systematic monitoring is compulsory. The blue jack mackerel Trachurus picturatus (Bowdich, 1825) is a benthopelagic fish species widely distributed and exploited in the area of East Atlantic (southern Bay of Biscay to south Morocco, including the Macaronesian archipelagos, Tristan de Cunha and Gough Islands). In the area of the Mediterranean Sea and its adjacent seas, this species can be found in its western part and the area of the Black Sea [2]. Within the distribution area of this species, its economic value is the lowest in the Mediterranean. In general, its specimens appear over the continental shelf and around offshore islands down to 400–500 m sea depth [3]. As with other pelagic fish species, it forms schools and tends to migrate from open sea to coastal areas [4]. In the area of the Adriatic, this species is rare and its specimens, in the past, were sporadically caught and noted [5–10]. Until now, only Bolognini et al. [11] reported the minor catch (N = 4) of blue jack mackerel in the Adriatic Sea. Diversity 2020, 12, 463; doi:10.3390/d12120463 www.mdpi.com/journal/diversity Diversity 2020, 12, 463 2 of 12 Recently, during the scientific surveys, a Croatian scientist noticed a higher amount of not so common Trachurus species in the catches. As geographical expansion of this rare species might have an impact on Adriatic biodiversity, its monitoring is crucial. It is believed that ocean warming is among the main driving forces of species abundance and distribution changes and, consequently, of changes in species biodiversity and marine ecosystem functioning [12,13]. Žužul et al. [14] offered ocean warming as one of the explanations behind the increase in the number of wild gilthead seabream noted in the costal parts of the Adriatic Sea [15]. The authors further argued that it is possible that wild gilthead seabream, as a species that thrives in warmer areas, is becoming more numerous at its northern distribution areas [16], as a consequence of increased larval survival and recruitment success [14]. Hence, to better understand what could be expected from the possible emergence of a blue jack mackerel population in the Adriatic Sea, the aim of this study was to investigate the biometrical analysis, the length–weight relationship and genetic diversity of the blue jack mackerel caught in the Adriatic Sea and compare the results to previously published research within the Northeast Atlantic Ocean and the Mediterranean Sea. The present paper provides phenotypic and genetic characteristics of this rare fish species in the Adriatic Sea, which might help us define this population that has obviously entered the Adriatic over the last decade. 2. Materials and Methods 2.1. Sample Processing and Biometric Analysis Specimens presumed to be blue jack mackerel (N = 155) and Mediterranean horse mackerel (N = 2) were collected by bottom trawl during the “MEDITS” research survey in July 2018 performed along the whole Croatian fishing ground. The tows were carried out over the continental shelf, between 40 to 800 m for a duration of 30 to 60 min, depending on the depth, and the mean trawl speed was 3 knots. Studied specimens were caught in 13 out of 63 hauls (Figure1). Collected specimens were immediately frozen and by the end of the survey transported to the laboratory for detailed analysis. In the laboratory, fourteen morphometric variables were measured: total length (TL), standard length (SL), fork length (FL), preanal (PAL) distance, head length (LH), eye diameter (O), maximum (H) body height, length of first (LD1) and second dorsal fin (LD2), length of pectoral fin (LP), as well as five meristic characters: number of rays in first (D1) and second dorsal fin (D2), in pectoral fin (P), in ventral fin (V) and in anal fin (A), according to Jardas [6]. Each body length ( 0.1 mm) and total body weight (W) ( 0.01 g) was measured. Morphometric ± ± characters were expressed as % of TL, with the exception of eye diameter (O), which was expressed as % of LH. Length–length relationships were determined by the method of least squares to fit a simple linear regression model. Length conversion equations were derived for total length (TL) and the head length (LH). The length–weight relationship was calculated by applying the exponential regression W = aTLb, where W = total fish weight in g; TL = total length in cm; a = proportionality constant; and b = allometric growth parameter. The hypotheses of isometric growth were tested using Student’s t-test (p < 0.05). 2.2. Genetic Analysis For genetic analysis, the sub-samples of muscle tissue were collected from 40 individuals and stored in absolute ethanol until genomic DNA (gDNA) extraction. Total genomic DNA (gDNA) was isolated using standard proteinase K digestion and phenol–chloroform extraction protocols [17] and stored in TE buffer at 20 C. Quantity and quality of isolated gDNA were assessed using − ◦ Nanophotometer (IMPLEN), at 260 and 280 nm. Samples with a 260/280 ratio between 1.7 and 1.9 were used as templates in a polymerase chain reaction (PCR). The fragment of cytochrome b locus (cytb) was amplified by PCR using the universal primers L14841 and H15149, described by Kocher et al. [18]. PCR was run in 25 µL reactions combining 0.125 µL of HotStarTaq DNA Polymerase (5 u/µL), 2.5 µL of Diversity 2020, 12, 463 3 of 12 10xPCR buffer, 1 µL of MgCl2 (25 mM), 0.5 µL of dNTP (0.25 mM each), 0.5 µL of each primer (10 µM) and DNase/RNase free PCR water to a volume of 25 µL. PCR conditions were as follows: 15 min at 95 ◦C, 35 cycles of 94 ◦C for 45 s, 51 ◦C for 45 s and 72 ◦C for 1 min, with a final extension at 72 ◦C for 10 min. PCR products were visualized on 1% agarose gel under UV transilluminator. Purification and DiversitySanger 2020, sequencing 12, x FOR PEER was REVIEW performed commercially by Macrogen Europe (Amsterdam, The Netherlands).3 of 12 (A) (B) FigureFigure 1. Map 1. Mapof the of Adriatic the Adriatic Sea Seashowing showing the thesampling sampling stations stations of of the the survey survey MEDITS MEDITS done done in in July 2018 July(A) 2018and (AMEDITS) and MEDITS surveys surveys done done over over the the last last six six summers summers (2013–2018)(2013–2018) (B ()B The) The red red (negative (negative stations)stations) and andblue blue (positive (positive stations) stations) dots dots indicate indicate the samplingsampling stations, stations, where where blue blue dot dot dimensions dimensions varied depending on the number of the blue jack mackerel Trachurus picturatus collected. varied depending on the number of the blue jack mackerel Trachurus picturatus collected. The obtained sequences were analysed for similarity with other known vertebrate sequences using 2.2. GeneticBlast Local Analysis Alignment Search Tool (BLAST) [19]. The obtained sequences (~350 bp) were compiled alongFor genetic all publicly analysis, available the sub-samples partial cytb sequences of muscle of tissueT. picturatus were, collected as well as from selected 40 sequencesindividuals of and stored in absolute ethanol until genomic DNA (gDNA) extraction. Total genomic DNA (gDNA) was isolated using standard proteinase K digestion and phenol–chloroform extraction protocols [17] and stored in TE buffer at −20 °C. Quantity and quality of isolated gDNA were assessed using Nanophotometer (IMPLEN), at 260 and 280 nm. Samples with a 260/280 ratio between 1.7 and 1.9 were used as templates in a polymerase chain reaction (PCR).
Recommended publications
  • Spawning Frequency of Trachurus Mediterraneus (Carangidae) in the Sea of Marmara
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 13: 441-446 (2013) DOI: 10.4194/1303-2712-v13_3_06 Spawning Frequency of Trachurus mediterraneus (Carangidae) in the Sea of Marmara Nazlı Demirel1,*, Ahsen Yüksek1 1 Istanbul University, Institute of Marine Science and Management, 34116, Vefa, Istanbul, Turkey. * Corresponding Author: Tel.: +90.212 4400000; Fax: +90.212 5268433; Received 10.April.2013 E-mail: [email protected] Accepted 28.June.2013 Abstract In this study the spawning frequency of Trachurus mediterraneus was estimated for the first time in the Mediterranean basin. The presence of the late-migratory nucleus stage oocytes and post ovulatory follicles (POFs) in the same ovaries were observed continuously during the sampling period. The daily percentage of spawning females with ovaries containing: late migratory nucleus (MN) stage, POFs (present up to 12-24h from the spawning event) was calculated as 11.7% and 18.6% respectively. The average percentage of females presenting one of the two different states was 15.3% which indicated that Mediterranean horse mackerel had high spawning rates in the Sea of Marmara. Our results indicated that T. mediterraneus is a multiple spawner and females spawn approximately every 6.6 days, therefore 20 times in the spawning period May-August 2009. Keywords: Spawning frequency, post ovulatory follicles, Mediterranean horse mackerel Marmara Denizi’nde Bulunan Trachurus mediterraneus (Carangidae) Türünün Üreme Sıklığı Özet Bu çalışmayla Akdeniz havzasında ilk defa T. mediterraneus türünün üreme sıklığına ilişkin değerlendirme ortaya konmuştur. Örnekleme dönemi boyunca aynı ovaryumda ileri çekirdek göçü evresindeki (ileri ÇG) oositlerle birlikte yumurtlama sonrası foliküllerin (YSF) bir arada bulunduğu gözlenmiştir.
    [Show full text]
  • Bouguerche Et Al
    Redescription and molecular characterisation of Allogastrocotyle bivaginalis Nasir & Fuentes Zambrano, 1983 (Monogenea: Gastrocotylidae) from Trachurus picturatus (Bowdich) (Perciformes: Carangidae) off the Algerian coast, Mediterranean Sea Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine To cite this version: Chahinez Bouguerche, Fadila Tazerouti, Delphine Gey, Jean-Lou Justine. Redescription and molecular characterisation of Allogastrocotyle bivaginalis Nasir & Fuentes Zambrano, 1983 (Monogenea: Gas- trocotylidae) from Trachurus picturatus (Bowdich) (Perciformes: Carangidae) off the Algerian coast, Mediterranean Sea. Systematic Parasitology, Springer Verlag (Germany), 2019, 96 (8), pp.681-694. 10.1007/s11230-019-09883-7. hal-02557974 HAL Id: hal-02557974 https://hal.archives-ouvertes.fr/hal-02557974 Submitted on 29 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bouguerche et al. Allogastrocotyle bivaginalis 1 Systematic Parasitology (2019) 96:681–694 DOI: 10.1007/s11230-019-09883-7 Redescription and molecular characterisation
    [Show full text]
  • Monthly Highlights
    Monthly Highlights No. 2 / 2021 In this issue As of 2021, the Monthly Highlights include Bulgaria among surveyed countries. According to data collected by EUMOFA from 13 EU Member States, in November 2020 striped venus and whelk together accounted for 12% of the total Contents first-sales value of the “Bivalves and other molluscs and aquatic invertebrates” commodity group. First sales in Europe Striped venus (Italy, Spain) and whelk From 2018 to 2020, the price of live, fresh, or chilled (Belgium, France, Netherlands) mussels imported in the EU from Norway fluctuated from 2,04 to 7,09 EUR/kg. In 2020, both price and Extra-EU imports volume exhibited a downward trend. Weekly average EU import prices of selected products from Over the last four years, German consumers spent selected countries of origin the most for a kilogram of fresh cod, (18,00 EUR/kg on average) compared to France Consumption Fresh cod in Germany, France, and the (16,80 EUR/kg) and the Netherlands (16,30 EUR/kg). Netherlands In 2019, the EU imports of fisheries and aquaculture products from South Africa accounted for over EUR Case studies 295 million and 80.597 tonnes. Hake, squid, and Fisheries and aquaculture in South Africa fishmeal constitute the bulk share of EU imports. Horse mackerel in the EU The largest market for horse mackerel exported by the EU is Egypt. In 2019, exports to the country Global highlights reached 54.000 tonnes, worth EUR 51 million, accounting for 50% of total export volume Macroeconomic context and 47% of value. Marine fuel, consumer prices, and In January 2021, the EU and Greenland concluded exchange rates negotiations for a new four-year Sustainable Fisheries Partnership Agreement (SFPA), which is the third most important agreement in place for the EU in financial terms.
    [Show full text]
  • Blue Jack Mackerel (Trachurus Picturatus) in Subdivision 10.A.2 (Azores Grounds)
    ICES Advice on fishing opportunities, catch, and effort Bay of Biscay and the Iberian Coast ecoregion Published 18 December 2020 Blue jack mackerel (Trachurus picturatus) in Subdivision 10.a.2 (Azores grounds) ICES advice on fishing opportunities ICES advises that when the precautionary approach is applied, catches should be no more than 878 tonnes in each of the years 2021 and 2022. Note: This advice sheet is abbreviated due to the COVID-19 disruption. The previous advice issued for 2019 and 2020 is attached as Annex 1. Stock development over time Figure 1 Blue jack mackerel in Subdivision 10.a.2. Landings and other catches. Landings include purse-seine catches for human consumption – PS (HC) – purse-seine catches for bait – PS (Bait) – and include unsold purse-seine landings withdrawn at the port as well as longline and handline catches (LL and HL). Other catches include longline bait, tuna live bait, and recreational catches (incomplete in 2017–2019). Stock and exploitation status Table 1 Blue jack mackerel in Subdivision 10.a.2. State of the stock and fishery relative to reference points. ICES Advice 2020 – jaa.27..10a2 – https://doi.org/10.17895/ices.advice.7650 ICES advice, as adopted by its advisory committee (ACOM), is developed upon request by ICES clients (European Union, NASCO, NEAFC, Iceland, and Norway). 1 ICES Advice on fishing opportunities, catch, and effort Published 18 December 2020 jaa.27.10a2 Catch scenarios ICES framework for category 5 stocks was applied (ICES, 2012). For stocks without information on abundance or exploitation, ICES considers that a precautionary reduction of catches should be implemented unless there is ancillary information clearly indicating that the current level of exploitation is appropriate for the stock.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Marine Fishes of the Azores: an Annotated Checklist and Bibliography
    MARINE FISHES OF THE AZORES: AN ANNOTATED CHECKLIST AND BIBLIOGRAPHY. RICARDO SERRÃO SANTOS, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS SANTOS, RICARDO SERRÃO, FILIPE MORA PORTEIRO & JOÃO PEDRO BARREIROS 1997. Marine fishes of the Azores: An annotated checklist and bibliography. Arquipélago. Life and Marine Sciences Supplement 1: xxiii + 242pp. Ponta Delgada. ISSN 0873-4704. ISBN 972-9340-92-7. A list of the marine fishes of the Azores is presented. The list is based on a review of the literature combined with an examination of selected specimens available from collections of Azorean fishes deposited in museums, including the collection of fish at the Department of Oceanography and Fisheries of the University of the Azores (Horta). Personal information collected over several years is also incorporated. The geographic area considered is the Economic Exclusive Zone of the Azores. The list is organised in Classes, Orders and Families according to Nelson (1994). The scientific names are, for the most part, those used in Fishes of the North-eastern Atlantic and the Mediterranean (FNAM) (Whitehead et al. 1989), and they are organised in alphabetical order within the families. Clofnam numbers (see Hureau & Monod 1979) are included for reference. Information is given if the species is not cited for the Azores in FNAM. Whenever available, vernacular names are presented, both in Portuguese (Azorean names) and in English. Synonyms, misspellings and misidentifications found in the literature in reference to the occurrence of species in the Azores are also quoted. The 460 species listed, belong to 142 families; 12 species are cited for the first time for the Azores.
    [Show full text]
  • Investigations on the Biology of Indian Mackerel Rastrelliger Kanagurta
    Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics Thesis submitted to Cochin University of Science and Technology in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY FACULTY OF MARINE SCIENCES GANGA .U. Reg. No. 2763 DEPARTMENT OF MARINE BIOLOGY, MICROBIOLOGY AND BIOCHEMISTRY SCHOOL OF MARINE SCIENCES COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI – 682 016, INDIA September 2010 DECLARATION I, Ganga. U., do hereby declare that the thesis entitled “Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics “ is a genuine record of research work carried out by me under the guidance of Prof. (Dr.) C.K. Radhakrishnan, Emeritus Professor, Cochin University of Science and Technology, and no part of the work has previously formed the basis for the award of any Degree, Associateship and Fellowship or any other similar title or recognition of any University or Institution. Ganga.U Kochi – 16 September-2010 CERTIFICATE This is to certify that the thesis entitled “Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics” to be submitted by Smt. Ganga. U., is an authentic record of research work carried out by her under my guidance and supervision in partial fulfilment of the requirement for the degree of Doctor of Philosophy of Cochin University of Science and Technology, under the faculty of Marine Sciences.
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • (Monogenea, Gastrocotylidae) Leads to a Better Understanding of the Systematics of Pseudaxine and Related Genera
    Parasite 27, 50 (2020) Ó C. Bouguerche et al., published by EDP Sciences, 2020 https://doi.org/10.1051/parasite/2020046 urn:lsid:zoobank.org:pub:7589B476-E0EB-4614-8BA1-64F8CD0A1BB2 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS No vagina, one vagina, or multiple vaginae? An integrative study of Pseudaxine trachuri (Monogenea, Gastrocotylidae) leads to a better understanding of the systematics of Pseudaxine and related genera Chahinez Bouguerche1, Fadila Tazerouti1, Delphine Gey2,3, and Jean-Lou Justine4,* 1 Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement: Interactions – Génomes, BP 32, El Alia, Bab Ezzouar, 16111 Alger, Algérie 2 Service de Systématique Moléculaire, UMS 2700 CNRS, Muséum National d’Histoire Naturelle, Sorbonne Universités, 43 Rue Cuvier, CP 26, 75231 Paris Cedex 05, France 3 UMR7245 MCAM, Muséum National d’Histoire Naturelle, 61, Rue Buffon, CP52, 75231 Paris Cedex 05, France 4 Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 51, 75231 Paris Cedex 05, France Received 27 May 2020, Accepted 24 July 2020, Published online 18 August 2020 Abstract – The presence/absence and number of vaginae is a major characteristic for the systematics of the Monogenea. Three gastrocotylid genera share similar morphology and anatomy but are distinguished by this character: Pseudaxine Parona & Perugia, 1890 has no vagina, Allogastrocotyle Nasir & Fuentes Zambrano, 1983 has two vaginae, and Pseudaxinoides Lebedev, 1968 has multiple vaginae. In the course of a study of Pseudaxine trachuri Parona & Perugia 1890, we found specimens with structures resembling “multiple vaginae”; we compared them with specimens without vaginae in terms of both morphology and molecular characterisitics (COI barcode), and found that they belonged to the same species.
    [Show full text]
  • Checklist of the Marine Fishes from Metropolitan France
    Checklist of the marine fishes from metropolitan France by Philippe BÉAREZ* (1, 8), Patrice PRUVOST (2), Éric FEUNTEUN (2, 3, 8), Samuel IGLÉSIAS (2, 4, 8), Patrice FRANCOUR (5), Romain CAUSSE (2, 8), Jeanne DE MAZIERES (6), Sandrine TERCERIE (6) & Nicolas BAILLY (7, 8) Abstract. – A list of the marine fish species occurring in the French EEZ was assembled from more than 200 references. No updated list has been published since the 19th century, although incomplete versions were avail- able in several biodiversity information systems. The list contains 729 species distributed in 185 families. It is a preliminary step for the Atlas of Marine Fishes of France that will be further elaborated within the INPN (the National Inventory of the Natural Heritage: https://inpn.mnhn.fr). Résumé. – Liste des poissons marins de France métropolitaine. Une liste des poissons marins se trouvant dans la Zone Économique Exclusive de France a été constituée à partir de plus de 200 références. Cette liste n’avait pas été mise à jour formellement depuis la fin du 19e siècle, © SFI bien que des versions incomplètes existent dans plusieurs systèmes d’information sur la biodiversité. La liste Received: 4 Jul. 2017 Accepted: 21 Nov. 2017 contient 729 espèces réparties dans 185 familles. C’est une étape préliminaire pour l’Atlas des Poissons marins Editor: G. Duhamel de France qui sera élaboré dans le cadre de l’INPN (Inventaire National du Patrimoine Naturel : https://inpn. mnhn.fr). Key words Marine fishes No recent faunistic work cov- (e.g. Quéro et al., 2003; Louisy, 2015), in which the entire Northeast Atlantic ers the fish species present only in Europe is considered (Atlantic only for the former).
    [Show full text]
  • Scomberomorus Commerson) Stocks Using Microsatellite Markers in Persian Gulf
    American-Eurasian J. Agric. & Environ. Sci., 12 (10): 1305-1310, 2012 ISSN 1818-6769 © IDOSI Publications, 2012 DOI: 10.5829/idosi.aejaes.2012.12.10.656 Genetic Differentiation of Narrow-Barred Spanish Mackerel (Scomberomorus commerson) Stocks Using Microsatellite Markers in Persian Gulf 12Ehsan Abedi, Hossein. Zolgharnein, 2Mohammad Ali Salari and 3Ahmad Qasemi 1Persian Gulf Centre for Oceanography, Iranian National Institute for Oceanography, Boushehr, Iran 2Department of Marine Biology, Faculty of Marine Science, Khorramshahr Marine Science and Technology University, Khorramshahr, Khuzestan, Iran 3Persian Gulf Research and Studies Center, Persian Gulf University, Boushehr, Iran Abstract: Scomberomorus commerson is not considered as an endangered species in Persian Gulf, but recent studies indicated the decline of this population and genetic management strategies are needed. In order to assess the genetic differentiation within and between wild populations of Spanish mackerel, five neutral microsatellite markers were used. Population structure and genetic divergence were investigated by 50 individuals at each site from Lengeh, Dayyer, Boushehr and Abadan in the northern coasts of Persian Gulf. All the markers produced polymorphic PCR products which amplified to the four populations. Genetic differentiation, as measured by Fst, was determined to estimate stock structure. Results identified one genetic stock with sufficient gene flow between all the four sites to prevent genetic differentiation from occurring. Only 2.98% of the genetic variation was observed among populations. Results revealed that adopting a single- stock model and regional shared management could probably be appropriate for sustainable long-term use of this important resource in Persian Gulf. Key words: Genetic Differentiation Microsatellite Marker Persian Gulf Scomberomorus Commerson Stock Structure INTRODUCTION importantly permanent resident populations have also been reported [5].
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]