Horse Mackerel

Total Page:16

File Type:pdf, Size:1020Kb

Horse Mackerel BROWNE TRADING COMPANY SSPPEECCIIEESS SSPPOOTTLLIIGGHHTT Horse Mackerel (Trachurus trachurus) WWIILLDD CCAAUUGGHHTT SO NAMED FOR THE LEGEND THAT THIS FISH WAS SO SUCH A Catch Region VIRILE SWIMMER THAT SMALLER FISH COULD RIDE ON ITS BACK Coastal Portugal LIKE A HORSE, the Atlantic Horse Mackerel belongs to the jack mackerel family and is an abundant catch off the central coast of Portugal. Found in the north-eastern Atlantic, Mediterranean and Black Seasonality Seas, and as far as Senegal, it is known to the Portuguese as the Year Round; chicharro – although to some know it as the scad and saurel. To the Preferred in Fall-Spring Japanese (whose local horse mackerel is Trachurus japonicus), it is known as aji, and is a popular sushi fish, admired for its pronounced Catch Method flavor, abundance and low price. Net Like the Atlantic Mackerel found off U.S. waters, the Horse Mackerel schools in large numbers along coastlines, feeding on squid, Yield crustaceans and other fishes. A powerful predatory and swimmer, it is Yield a stunning fish to the eye, bearing brilliant metallic greenish-blue lines (Fillet Percentage) along its silvery sides. They have a large head and wide eyes, few bones 46-50 % to contend with but heavy bony scales along their lateral line. Flavor Profile: Horse Mackerel flesh is quite oily (although somewhat less so than the common Atlantic Mackerel), leading to a short shelf life once landed. Strong but not This makes freshness an absolute imperative when purchasing. It is overpowering; oily firm, making it ideal for the grill - the Japanese like to salt and grill them whole, called aji no shiyoyaki. Its rich flavor is also a favorite served raw as sushi and sashimi, or cured as escabeche with either Texture Profile: citrus or vinegar to bring down the natural acidity of the fish. They can Firm, medium flake be baked whole, pan-fried as fillets (the skin crisps nicely) or dipped in flour and fried. The oil content also makes it excellent for smoking or barbeque. Horse Mackerel range in size from about 1 to 2 pounds Substitute: each. • Sardines • Herring BROWNE TRADING CO. Merrill’s Wharf Portland, Maine 04101 • Anchovy P: 800-944-7848 E: [email protected] Web: www.brownetrading.com .
Recommended publications
  • Published Estimates of Life History Traits for 84 Populations of Teleost
    Summary of data on fishing pressure group (G), age at maturity (Tm, years), length at maturity (Lm, cm), length-at-5%-survival (L.05, cm), time-to-5%-survival 3 (T.05, years), slope of the log-log fecundity-length relationship (Fb), fecundity the year of maturity (Fm), and egg volume (Egg, mm ) for the populations listed in the first three columns. Period is the period of field data collection. Species Zone Period G Tm Lm L.05 T.05 Fb Fm Egg Data sources (1) (1) (2) (3) (4) (4) (5) (1) (2) (3) (4) (5) Clupeiformes Engraulis capensis S. Africa 71-74 2 1 9.5 11.8 1.8 3.411 4.856E+04 0.988 118 119 137 118 138 Engraulis encrasicholus B. Biscay 87-92 2 1 11.5 14 1.4 3.997 9.100E+04 1.462 125 30, 188 170, 169 133, 23 145 Medit. S. 84-90 1 1 12.5 13.4 2.3 4.558 9.738E+04 0.668 161 161 160 161, 120 120 Sprattus sprattus Baltic S. 85-91 1 2 12 13.8 6.2 2.84 2.428E+05 1.122 15 19 26 184, 5 146 North S. 73-77 1 2 11.5 14.3 3 4.673 8.848E+03 0.393 8 107 106 33 169 Clupea harengus Baltic S. 75-82 1 3 16 24 4.9 3.206 4.168E+04 0.679 116 191 191 116 169 North S. 60-69 3 3 22 26.9 2.7 4.61 2.040E+04 0.679 52 53, 7 52 39 169 Baltic S.
    [Show full text]
  • Notice Calling for Suggestions, Views, Comments Etc from WTO- SPS Committee Members Within a Period of 60 Days on the Draft Noti
    Notice Calling for suggestions, views, comments etc from WTO- SPS Committee members within a period of 60 days on the draft notification related to Standards for list of Histamine Forming Fish Species and limits of Histamine level for Fish and Fishery Products. 1. In the Food Safety and Standards (Contaminants, toxins and Residues) Regulations, 2011, in regulation 2.5, relating to “Other Contaminants”, after sub-regulation 2.5.1 the following sub-regulation shall be inserted, namely:- “2.5.2 Histamine in Fish and Fishery Products contaminants, Toxins and Residues 1. Fish species having potential to cause histamine poisoning Sl.No. Family Scientific Name Common Name 1. Carangidae Alectis indica Indian Threadfish Alepes spp. Scad Atropus atropos Cleftbelly trevally Carangoides Yellow Jack bartholomaei Carangoides spp. Trevally Caranx crysos Blue runner Caranx spp. Jack/Trevally Decapterus koheru Koheru Decapterus russelli Indian scad Decapterus spp. Scad Elagatis bipinnulata Rainbow Runner Megalaspis cordyla Horse Mackerel/Torpedo Scad Nematistius pectoralis Roosterfish Oligoplites saurus Leather Jacket Pseudocaranx dentex White trevally Sl.No. Family Scientific Name Common Name Scomberoides Talang queenfish commersonnianus Scomberoides spp. Leather Jacket/Queen Fish Selene spp. Moonfish Seriola dumerili Greater/Japanese Amberjack or Rudder Fish Seriola lalandi Yellowtail Amberjack Seriola quinqueradiata Japanese Amberjack Seriola rivoliana Longfin Yellowtail Seriola spp. Amberjack or Yellowtail Trachurus capensis Cape Horse Mackerel Trachurus japonicas Japanese Jack Mackerel Trachurus murphyi Chilean Jack Mackerel Trachurus Yellowtail Horse Mackerel novaezelandiae Trachurus spp. Jack Mackerel/Horse Mackerel Trachurus trachurus Atlantic Horse Mackerel Uraspis secunda Cottonmouth jack 2. Chanidae Chanos chanos Milkfish 3. Clupeidae Alosa pseudoharengus Alewife Alosa spp. Herring Amblygaster sirm Spotted Sardinella Anodontostoma chacunda Chacunda gizzard shad Brevoortia patronus Gulf Menhaden Brevoortia spp.
    [Show full text]
  • Blue Jack Mackerel (Trachurus Picturatus) in Subdivision 10.A.2 (Azores Grounds)
    ICES Advice on fishing opportunities, catch, and effort Bay of Biscay and the Iberian Coast ecoregion Published 18 December 2020 Blue jack mackerel (Trachurus picturatus) in Subdivision 10.a.2 (Azores grounds) ICES advice on fishing opportunities ICES advises that when the precautionary approach is applied, catches should be no more than 878 tonnes in each of the years 2021 and 2022. Note: This advice sheet is abbreviated due to the COVID-19 disruption. The previous advice issued for 2019 and 2020 is attached as Annex 1. Stock development over time Figure 1 Blue jack mackerel in Subdivision 10.a.2. Landings and other catches. Landings include purse-seine catches for human consumption – PS (HC) – purse-seine catches for bait – PS (Bait) – and include unsold purse-seine landings withdrawn at the port as well as longline and handline catches (LL and HL). Other catches include longline bait, tuna live bait, and recreational catches (incomplete in 2017–2019). Stock and exploitation status Table 1 Blue jack mackerel in Subdivision 10.a.2. State of the stock and fishery relative to reference points. ICES Advice 2020 – jaa.27..10a2 – https://doi.org/10.17895/ices.advice.7650 ICES advice, as adopted by its advisory committee (ACOM), is developed upon request by ICES clients (European Union, NASCO, NEAFC, Iceland, and Norway). 1 ICES Advice on fishing opportunities, catch, and effort Published 18 December 2020 jaa.27.10a2 Catch scenarios ICES framework for category 5 stocks was applied (ICES, 2012). For stocks without information on abundance or exploitation, ICES considers that a precautionary reduction of catches should be implemented unless there is ancillary information clearly indicating that the current level of exploitation is appropriate for the stock.
    [Show full text]
  • A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations
    A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS June 30 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria. L.D. Palomares, Rainer Froese, Brittany Derrick, Simon-Luc Nöel, Gordon Tsui Jessika Woroniak Daniel Pauly A report prepared by the Sea Around Us for OCEANA June 30, 2018 A PRELIMINARY GLOBAL ASSESSMENT OF THE STATUS OF EXPLOITED MARINE FISH AND INVERTEBRATE POPULATIONS Maria L.D. Palomares1, Rainer Froese2, Brittany Derrick1, Simon-Luc Nöel1, Gordon Tsui1, Jessika Woroniak1 and Daniel Pauly1 CITE AS: Palomares MLD, Froese R, Derrick B, Nöel S-L, Tsui G, Woroniak J, Pauly D (2018) A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. The University of British Columbia, Vancouver, p. 64. 1 Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver BC V6T1Z4 Canada 2 Helmholtz Centre for Ocean Research GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany TABLE OF CONTENTS Executive Summary 1 Introduction 2 Material and Methods 3 − Reconstructed catches vs official catches 3 − Marine Ecoregions vs EEZs 3 − The CMSY method 5 Results and Discussion 7 − Stock summaries reports 9 − Problematic stocks and sources of bias 14 − Stocks in the countries where OCEANA operates 22 − Stock assessments on the Sea Around Us website 31 − The next steps 32 Acknowledgements 33 References 34 Appendices I. List of marine ecoregions by EEZ 37 II. Summaries of number of stock by region and 49 by continent III.
    [Show full text]
  • Ices Cooperative Research Report (Crr) on Fish Ageing
    ICES COOPERATIVE RESEARCH REPORT (CRR) ON FISH AGEING CHAPTER 5: Small and Medium Pelagic Species Chapter editors: Begoña Villamor and Pierluigi Carbonara Collaborators (alphabetical order): Pablo Abaunza, Naroa Aldanondo, Loes Bolle, Gertrud Delfs, Tomas Gröhsler, Carmen Hernandez, M. Rosario Navarro, Eduardo Soares, Fernando Ramos, Isabel Riveiro, Norbert Rohlf, Jorge Tornero, Jens Ulleweit, Andres Uriarte, Lotte Worsøe Clausen. Contents 1. Introduction .......................................................................................................................... 3 2. Summary of age estimation methodologies........................................................................... 3 2.1. Summary of general age estimation methods and problems ........................................... 9 2.1.1 Anchovy (Engraulis encrasicolus) .............................................................................. 9 2.1.2 Sardine (Sardina pilchardus) ................................................................................... 12 2.1.3 Herring (Clupea harengus) ...................................................................................... 14 2.1.4 Sprat (Sprattus sprattus) ......................................................................................... 15 2.1.5 Mackerel (Scomber scombrus) ................................................................................ 15 2.1.6 Chub mackerel (Scomber Colias) ............................................................................. 17 Figure 2.1.6.4 - Otholith
    [Show full text]
  • Fish, Crustaceans, Molluscs, Etc
    27 Fish, crustaceans, molluscs, etc Capture production by principal species in 2014 A-1 Poissons, crustacés, mollusques, etc Captures par principales espèces en 2014 (e) Peces, crustáceos, moluscos, etc Capturas por especies principales en 2014 3-alpha code English name Scientific name Code alpha-3 Nom anglais Nom scientifique 2010 2011 2012 2013 2014 Código alfa-3 Nombre inglés Nombre científico t t t t t ALK Alaska pollock(=Walleye poll.) Theragra chalcogramma 2 833 170 3 210 513 3 271 726 3 239 296 3 214 422 VET Anchoveta(=Peruvian anchovy) Engraulis ringens 4 205 979 8 319 597 4 692 855 5 674 036 3 140 029 SKJ Skipjack tuna Katsuwonus pelamis 2 621 078 2 610 513 2 772 288 2 974 189 3 058 608 MAS Chub mackerel Scomber japonicus 1 641 609 1 715 379 1 581 702 1 655 132 1 829 833 HER Atlantic herring Clupea harengus 2 203 687 1 780 268 1 773 235 1 817 333 1 631 181 YFT Yellowfin tuna Thunnus albacares 1 241 080 1 206 409 1 344 207 1 313 424 1 466 606 MAC Atlantic mackerel Scomber scombrus 887 444 945 501 911 255 981 998 1 420 744 JAN Japanese anchovy Engraulis japonicus 1 204 106 1 325 758 1 296 383 1 329 311 1 396 312 COD Atlantic cod Gadus morhua 951 933 1 051 545 1 114 401 1 359 399 1 373 460 LHT Largehead hairtail Trichiurus lepturus 1 341 842 1 258 762 1 232 810 1 258 413 1 260 824 PIL European pilchard(=Sardine) Sardina pilchardus 1 245 956 1 037 161 1 019 457 1 001 627 1 207 764 GIS Jumbo flying squid Dosidicus gigas 815 978 906 310 950 630 847 292 1 161 690 WHB Blue whiting(=Poutassou) Micromesistius poutassou 551 479 108 077
    [Show full text]
  • Investigations on the Biology of Indian Mackerel Rastrelliger Kanagurta
    Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics Thesis submitted to Cochin University of Science and Technology in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY FACULTY OF MARINE SCIENCES GANGA .U. Reg. No. 2763 DEPARTMENT OF MARINE BIOLOGY, MICROBIOLOGY AND BIOCHEMISTRY SCHOOL OF MARINE SCIENCES COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI – 682 016, INDIA September 2010 DECLARATION I, Ganga. U., do hereby declare that the thesis entitled “Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics “ is a genuine record of research work carried out by me under the guidance of Prof. (Dr.) C.K. Radhakrishnan, Emeritus Professor, Cochin University of Science and Technology, and no part of the work has previously formed the basis for the award of any Degree, Associateship and Fellowship or any other similar title or recognition of any University or Institution. Ganga.U Kochi – 16 September-2010 CERTIFICATE This is to certify that the thesis entitled “Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics” to be submitted by Smt. Ganga. U., is an authentic record of research work carried out by her under my guidance and supervision in partial fulfilment of the requirement for the degree of Doctor of Philosophy of Cochin University of Science and Technology, under the faculty of Marine Sciences.
    [Show full text]
  • Biometry, Distribution and Genetic Characterization of Blue Jack Mackerel Trachurus Picturatus (Bowdich, 1825), a Rare Pelagic Fish Species in the Adriatic Sea
    diversity Article Biometry, Distribution and Genetic Characterization of Blue Jack Mackerel Trachurus picturatus (Bowdich, 1825), a Rare Pelagic Fish Species in the Adriatic Sea Barbara Zorica , Ivana Bušeli´c* , Vanja Cikešˇ Keˇc,Vedran Vuletin, Ivana Lepen Plei´c, Igor Isajlovi´c,Ivana Radoni´cand Nedo Vrgoˇc Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, 21000 Split, Croatia; [email protected] (B.Z.); [email protected] (V.C.K.);ˇ [email protected] (V.V.); [email protected] (I.L.P.); [email protected] (I.I.); [email protected] (I.R.); [email protected] (N.V.) * Correspondence: [email protected]; Tel.: +385-21-408009 Received: 26 October 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: The blue jack mackerel Trachurus picturatus (Bowdich, 1825) specimens (N = 155) were collected during the MEDITS survey, done along the eastern side, precisely, of the Croatian fishing ground in July 2018. Biometrical analysis of ten morphometric and five meristic characters, as well as genetic analysis proved that the collected specimens were blue jack mackerel. The total length (TL) and weight (W) of all observed specimens ranged from 9.2 to 33.7 cm (12.15 2.95 cm) and from 5.79 to ± 384.94 g (17.64 39.42 g), respectively. All calculated length–length relationships were linear (r > 0.923). ± Sex was determined only on two larger specimens (28 cm < TL < 32.8 cm), which were females. In the length–weight relationship, positive allometry was established (b = 3.1789). Based on 37 partial cytochrome b sequences, the overall haplotype diversity (h) of 0.812 0.048 and nucleotide diversity ± (π) of 0.0064 0.0007 indicated high levels of haplotype and low nucleotide diversity.
    [Show full text]
  • (Monogenea, Gastrocotylidae) Leads to a Better Understanding of the Systematics of Pseudaxine and Related Genera
    Parasite 27, 50 (2020) Ó C. Bouguerche et al., published by EDP Sciences, 2020 https://doi.org/10.1051/parasite/2020046 urn:lsid:zoobank.org:pub:7589B476-E0EB-4614-8BA1-64F8CD0A1BB2 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS No vagina, one vagina, or multiple vaginae? An integrative study of Pseudaxine trachuri (Monogenea, Gastrocotylidae) leads to a better understanding of the systematics of Pseudaxine and related genera Chahinez Bouguerche1, Fadila Tazerouti1, Delphine Gey2,3, and Jean-Lou Justine4,* 1 Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement: Interactions – Génomes, BP 32, El Alia, Bab Ezzouar, 16111 Alger, Algérie 2 Service de Systématique Moléculaire, UMS 2700 CNRS, Muséum National d’Histoire Naturelle, Sorbonne Universités, 43 Rue Cuvier, CP 26, 75231 Paris Cedex 05, France 3 UMR7245 MCAM, Muséum National d’Histoire Naturelle, 61, Rue Buffon, CP52, 75231 Paris Cedex 05, France 4 Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 51, 75231 Paris Cedex 05, France Received 27 May 2020, Accepted 24 July 2020, Published online 18 August 2020 Abstract – The presence/absence and number of vaginae is a major characteristic for the systematics of the Monogenea. Three gastrocotylid genera share similar morphology and anatomy but are distinguished by this character: Pseudaxine Parona & Perugia, 1890 has no vagina, Allogastrocotyle Nasir & Fuentes Zambrano, 1983 has two vaginae, and Pseudaxinoides Lebedev, 1968 has multiple vaginae. In the course of a study of Pseudaxine trachuri Parona & Perugia 1890, we found specimens with structures resembling “multiple vaginae”; we compared them with specimens without vaginae in terms of both morphology and molecular characterisitics (COI barcode), and found that they belonged to the same species.
    [Show full text]
  • HISTAMINE LEVELS in FROZEN and SMOKED FISH in NUNGUA MARKET by ARABA INCOOM B.Sc. FOOD SCIENCE and TECHNOLOGY (HONS) THIS THESIS
    HISTAMINE LEVELS IN FROZEN AND SMOKED FISH IN NUNGUA MARKET BY ARABA INCOOM B.Sc. FOOD SCIENCE AND TECHNOLOGY (HONS) THIS THESIS IS PRESENTED TO THE DEPARTMENT OF FOOD SCIENCE AND TECHNOLOGY, KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF MASTER OF SCIENCE IN FOOD QUALITY MANAGEMENT JULY 2016 DECLARATION I HEREBY DECLARE THAT I HAVE WHOLLY UNDERTAKEN THE STUDY REPORTED HEREIN UNDER THE SUPERVISION OF DR. FRANCIS ALEMAWOR AND THAT EXCEPT WHERE REFERENCES HAVE BEEN DULY CITED, THIS DISSERTATION IS THE OUTCOME OF MY RESEARCH. NEITHER ALL NOR PARTS OF THIS THESIS HAVE BEEN PRESENTED FOR ANOTHER DEGREE ELSEWHERE. ARABA INCOOM _________________ _______________ (M. SC. STUDENT) SIGNATURE DATE FRANCIS ALEMAWOR, PhD __________________ _______________ (SUPERVISOR) SIGNATURE DATE PROF MRS I. ODURO __________________ _______________ (HEAD OF DEPARTMENT) SIGNATURE DATE II ACKNOWLEDGEMENT I am extremely grateful to God Almighty for His strength and wisdom during my study. My profound gratitude also goes to my supervisor Dr. Francis Alemawor for his patience and wiliness to direct me to get the best out of my research. May God richly bless you and increase you in every good thing. I also owe thanks to Dr. Emmanuel DeGraft Johnson for sharing his expertise in statistics which aided me in data analysis. A special thanks to Mr. Isaac Ofosu who gave invaluable suggestions at the beginning of my study. I also thank Mr. Clifford Frimpong, the Head of Department of the Food and Agric laboratories of Ghana Standards Authority for the concern shown in the progress of the studies. I thank the staff of the Mycotoxins and Histamine Laboratory for their unwavering support they gave me during my analysis.
    [Show full text]
  • Scomberomorus Commerson) Stocks Using Microsatellite Markers in Persian Gulf
    American-Eurasian J. Agric. & Environ. Sci., 12 (10): 1305-1310, 2012 ISSN 1818-6769 © IDOSI Publications, 2012 DOI: 10.5829/idosi.aejaes.2012.12.10.656 Genetic Differentiation of Narrow-Barred Spanish Mackerel (Scomberomorus commerson) Stocks Using Microsatellite Markers in Persian Gulf 12Ehsan Abedi, Hossein. Zolgharnein, 2Mohammad Ali Salari and 3Ahmad Qasemi 1Persian Gulf Centre for Oceanography, Iranian National Institute for Oceanography, Boushehr, Iran 2Department of Marine Biology, Faculty of Marine Science, Khorramshahr Marine Science and Technology University, Khorramshahr, Khuzestan, Iran 3Persian Gulf Research and Studies Center, Persian Gulf University, Boushehr, Iran Abstract: Scomberomorus commerson is not considered as an endangered species in Persian Gulf, but recent studies indicated the decline of this population and genetic management strategies are needed. In order to assess the genetic differentiation within and between wild populations of Spanish mackerel, five neutral microsatellite markers were used. Population structure and genetic divergence were investigated by 50 individuals at each site from Lengeh, Dayyer, Boushehr and Abadan in the northern coasts of Persian Gulf. All the markers produced polymorphic PCR products which amplified to the four populations. Genetic differentiation, as measured by Fst, was determined to estimate stock structure. Results identified one genetic stock with sufficient gene flow between all the four sites to prevent genetic differentiation from occurring. Only 2.98% of the genetic variation was observed among populations. Results revealed that adopting a single- stock model and regional shared management could probably be appropriate for sustainable long-term use of this important resource in Persian Gulf. Key words: Genetic Differentiation Microsatellite Marker Persian Gulf Scomberomorus Commerson Stock Structure INTRODUCTION importantly permanent resident populations have also been reported [5].
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]