An Updated List of the Plants Associated with Plant-Parasitic Aphelenchoides (Nematoda: Aphelenchoididae) and Its Implications for Plant-Parasitism Within This Genus

Total Page:16

File Type:pdf, Size:1020Kb

An Updated List of the Plants Associated with Plant-Parasitic Aphelenchoides (Nematoda: Aphelenchoididae) and Its Implications for Plant-Parasitism Within This Genus Zootaxa 4013 (2): 207–224 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4013.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:78D07882-590D-44D6-A765-23BE9A6999ED An updated list of the plants associated with plant-parasitic Aphelenchoides (Nematoda: Aphelenchoididae) and its implications for plant-parasitism within this genus ALCIDES SÁNCHEZ-MONGE1,2, LORENA FLORES3, LUIS SALAZAR3, SUE HOCKLAND4 & WIM BERT1 1 Ghent University, Department of Biology, Nematology Research Unit, Ledeganckstraat 35, B-9000 Ghent, Belgium. 2 Universidad de Costa Rica, Escuela de Estudios Generales, 2060, Costa Rica 3 Universidad de Costa Rica, Laboratorio de Nematología, Centro de Investigación en Protección de Cultivos (CIPROC), 2060, Costa Rica 4 Independent Plant Nematology Consultant, Harrogate, North Yorkshire, England, UK. www.plantparasiticnematodes.com Abstract Few Aphelenchoides spp. are facultative plant-parasites (foliar and bulb nematodes); three of them are well known in ag- ricultural systems, namely Aphelenchoides besseyi, A. fragariae and A. ritzemabosi. Ten other plant-parasitic species, A. arachidis, A. bicaudatus, A. blastophthorus, A. dalianensis, A. ensete, A. nechaleos, A. paranechaleos, A. saprophilus, A. sphaerocephalus and A. subtenuis, have been reported from a limited number of plant species. We compiled a new data- base of the associated plants for these thirteen species, a comprehensive list that includes 1104 reports from 126 botanical families. A. besseyi, A. fragariae and A. ritzemabosi represent 94% of the reports, circa 83% and 16% of the total reports correspond to flowering plants and ferns, respectively, with three records on conifers and two from other botanical groups also listed. Most plant-parasitic Aphelenchoides show a remarkably broad diversity of associated plants. Most species ap- pear to have no specific plant hosts (i.e. are generalists). The broad host ranges of these species and absence of more inti- mate interactions with the associated plants highlights the primitive mode of parasitism in Aphelenchoides species, making them potentially interesting in the study of the evolution of plant parasitism. Even though the compiled list of as- sociated plants is long, it probably only represents a fraction of the potential range. The complete compilation has been uploaded to http://nematodes.myspecies.info/. Key words: crops, evolution, ferns, flowering plants, foliar nematodes, phylogeny Resumen: Pocas especies de Aphelenchoides son parásitos facultativos de plantas (nematodos foliares y del bulbo), tres de ellas: Aph- elenchoides besseyi, A. fragariae y A. ritzemabosi son muy importantes en sistemas agrícolas. Otras diez especies; A. arachidis, A. bicaudatus, A. blastophthorus, A. dalianensis, A. ensete, A. nechaleos, A. paranechaleos, A. saprophilus, A. sphaerocephalus y A. subtenuis, han sido informadas en un número reducido de especies de plantas. Se compiló una nueva base de datos de plantas asociadas a las trece especies, e incluye 1104 registros de 126 familias botánicas. A. besseyi, A. fragariae and A. ritzemabosi representan el 94% de los registros, cerca del 83% y 16% del total de los mismos correspon- den a plantas con flores y helechos, respectivamente, tres registros en coníferas y dos en otros grupos botánicos fueron también enlistados. La mayoría de los Aphelenchoides fitófagos muestran una amplia diversidad de plantas asociadas. La mayoría de las especies no tienen hospederos específicos (generalistas). Los amplios rangos de estas especies y la ausencia de relaciones más íntimas con sus plantas asociadas destacan el modo primitivo de parasitismo de Aphelenchoides, haci- éndolos potencialmente interesantes en el estudio de la evolución del fitoparasitismo. A pesar de la amplitud de la lista compilada, es probable que solo represente una parte de la potencial diversidad de asociaciones. Este listado está di- sponible en http://nematodes.myspecies.info/. Palabras clave: cultivos, evolución, filogenia, helechos, nematodos foliares, plantas con flores Accepted by P. Mullin: 18 Aug. 2015; published: 8 Sept. 2015 207 Introduction Around 4000 species of nematodes have been described as plant-parasitic i.e., those that can feed on plant tissue (Decraemer & Hunt 2013) and some of them have a serious economic impact on crops. Plant-parasitism has arisen independently several times in Nematoda: in Trichodoridae Thorne, 1935, Longidoridae Thorne, 1935 (Meyl, 1961) and in the order Panagrolaimida Hodda, 2007 specifically in the suborders Tylenchina Chitwood, 1950 and Aphelenchina Geraert, 1966 (sensu Hodda 2011). However, the position of “tylenchs” (=Tylenchina Chitwood, 1950 sensu Hodda 2011 or Tylenchida Thorne, 1949 sensu Siddiqi 1980) versus “aphelenchs” (=Aphelenchina Geraert, 1966 sensu Hodda 2011 or Aphelenchida Siddiqi, 1980) is controversial, and thus the point at which plant- parasitism arose remains hypothetical. Phylogenetic hypotheses based on nuclear SSU rDNA (Bert et al. 2008, van Megen et al. 2009) suggested that Aphelenchoidea Fuchs, 1937 (Thorne, 1949) is a sister to tylenchs while Aphelenchoidoidea Skarbilovich, 1947 (Siddiqi, 1980) have an independent origin. However, a recent phylogenetic analysis based on mitochondrial genomes (Kim et al. 2015) indicate a monophyletic status for aphelenchs, independent from the tylenchs. The superfamily Aphelenchoidoidea (sensu Hodda 2011) comprises 7 families and includes mainly fungal- feeding species, insect parasites, predators but also some damaging plant pathogens in the genera Bursaphelenchus Fuchs, 1937 and Aphelenchoides Fischer, 1894 (Nickle, 1970). Although most species of Aphelenchoides are fungivores or predators (Kanzaki & Giblin-Davis 2012), thirteen species have been reported as plant-parasitic in a wide variety of plants. Special attention has been paid to three predominantly plant-parasitic species within the “foliar and bulb nematodes” (Aphelenchoididae Skarbilovich, 1947 (Paramonov, 1953)) namely Aphelenchoides besseyi Christie, 1942, A. fragariae (Ritzema Bos, 1890) Christie, 1932 and A. ritzemabosi (Schwartz, 1911) Steiner & Buhrer, 1932, that have been extensively studied due to their economic impact and yield losses. Notably, A. besseyi was listed within the top ten plant-parasitic nematodes (PPN) according to its scientific and economic importance (Jones et al. 2013) while A. fragariae and A. ritzemabosi are the most common parasitic nematodes on aerial parts of ornamental plants (McCuiston et al. 2007). In addition to the plant-parasitic Aphelenchoides, a few mycophagous species have gained a quarantine status, i.e. A. agarici Seth & Sharma, 1986, A. composticola Franklin, 1957, A. sacchari Hooper, 1958 and A. swarupi Seth & Sharma, 1986 (Singh et al. 2013). The number of plants associated with Aphelenchoides has increased in recent years and this genus shows a broad host range compared to other PPN, with over 700 species from 85 botanical families being reported (Kohl 2008, 2011). However, Koch's Postulates i.e., the four criteria to identify the causal agent of a disease, have not been fulfilled in most cases and the term “associated host” is preferred to denote a possible parasitic relationship (Kohl 2011). The high number of nominal species of Aphelenchoides (circa 200), of which the majority have not been described sufficiently to enable reliable identification, has led to notorious determination problems. Moreover, in addition to a large intra-specific variation and minimal inter-specific relationships, most taxa are not yet associated with discriminating molecular data, muddling the taxonomic work on this genus (Zhao 2006). By the beginning of 2015, the databases of the International Nucleotide Sequence Database Collaboration (INSDC) had more than 600 nucleotide sequences (mostly mitochondrial DNA and RNA subunits) that belonged to Aphelenchoides samples, but for only 17 named species while the number of taxa tagged only as “Aphelenchoides sp.” was 34. Some of these taxa are represented only by a single sequence. Based on the number of their hosts, parasites are either classified as specialists or generalists (Koprivnikar & Randhawa 2013). Both feeding strategies are probably present in the genus Aphelenchoides as some species have been reported only on one or two related plant species while others have been reported on plant groups not closely related. In this paper, we present a compiled list of the plant species associated with plant-parasitic Aphelenchoides to appraise the potential/overlapping ranges that a single or a specific combination of species could have. Based on the compiled data of Aphelenchoides records and relationships, respectively plotted on a plant and Aphelenchoides spp. phylogenetic framework, we also provide some insights on plant-parasitism of this genus. Materials and methods Data on Aphelenchoides species and their associated plants were compiled from the available literature (papers, bulletins, theses, datasheets), on-line publications (Kohl 2011) and the University of California Davis on-line 208 · Zootaxa 4013 (2) © 2015 Magnolia Press SÁNCHEZ-MONGE ET AL. database (http://plpnemweb.ucdavis.edu). Reports considered by the source as “Doubtful” or “Mistake” were excluded from the list as well as those that originated from soil samples. When the nematodes were found in roots, only those plants explicitly described as hosts or associated hosts were listed to avoid
Recommended publications
  • Asparagus Densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop
    TAXON: Asparagus densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop Taxon: Asparagus densiflorus (Kunth) Jessop Family: Asparagaceae Common Name(s): asparagus fern Synonym(s): Asparagopsis densiflora Kunth foxtail fern Asparagus myriocladus Baker plume asparagus Protasparagus densiflorus (Kunth) Oberm. regal fern Sprenger's asparagus fern Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Feb 2021 WRA Score: 15.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tuberous Geophyte, Naturalized, Environmental Weed, Dense Cover, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304
    [Show full text]
  • BGBM Annual Report 2017–2019
    NETWORKING FOR DIVERSITY Annual Report 2017 – 2019 2017 – BGBM BGBM Annual Report 2017 – 2019 Cover image: Research into global biodiversity and its significance for humanity is impossible without networks. The topic of networking can be understood in different ways: in the natural world, with the life processes within an organism – visible in the network of the veins of a leaf or in the genetic diversity in populations of plants – networking takes place by means of pollen, via pollinators or the wind. In the world of research, individual objects, such as a particular plant, are networked with the data obtained from them. Networking is also crucial if this data is to be effective as a knowledge base for solving global issues of the future: collaboration between scientific experts within and across disciplines and with stakeholders at regional, national and international level. Contents Foreword 5 Organisation 56 A network for plants 6 Facts and figures 57 Staff, visiting scientists, doctoral students 57 Key events of 2017 – 2019 10 Affiliated and unsalaried scientists, volunteers 58 BGBM publications 59 When diversity goes online 16 Species newly described by BGBM authors 78 Families and genera newly described by BGBM authors 82 On the quest for diversity 20 Online resources and databases 83 Externally funded projects 87 Invisible diversity 24 Hosted scientific events 2017 – 2019 92 Collections 93 Humboldt 2.0 30 Library 96 BGBM Press: publications 97 Between East and West 36 Botanical Museum 99 Press and public relations 101 At the service of science 40 Visitor numbers 102 Budget 103 A research museum 44 Publication information 104 Hands-on science 50 Our symbol, the corncockle 52 4 5 Foreword BGBM Annual Report 2017 – 2019 We are facing vital challenges.
    [Show full text]
  • Invasive Asteraceae Copy.Indd
    Family Asteraceae Family: Asteraceae Spotted Knapweed Centaurea biebersteinii DC. Synonyms Acosta maculosa auct. non Holub, Centaurea maculosa auct. non Lam. Related Species Russian Knapweed Acroptilon repens (L.) DC. Description Spotted knapweed is a biennial to short-lived perennial plant. Seedling cotyledons are ovate, with the first leaves lance-shaped, undivided, and hairless. (Young seedlings can appear grass-like.) Stems grow 1 to 4 feet tall, and are many-branched, with a single flower at the end of each branch. Rosette leaves are indented or divided Old XID Services photo by Richard about half-way to the midrib. Stem leaves are alternate, pinnately divided, Spotted knapweed flower. and get increasingly smaller toward the tip of each branch. Flower heads are urn-shaped, up to 1 inch wide, and composed of pink, purple, or sometimes white disk flowers. A key characteristic of spotted knap- weed is the dark comb-like fringe on the tips of the bracts, found just below the flower petals. These dark-tipped bracts give this plant its “spotted” appearance. Russian knapweed is a creeping perennial plant that is extensively branched, with solitary urn-shaped pink or purple flower heads at the end of each branch. Similar in appearance to spotted knapweed, Russian knapweed can be distinguished by its slightly smaller flower heads, flower head bracts covered in light hairs, with papery tips, and scaly dark brown or black rhizomes, which have a burnt appearance. Family: Asteraceae Spotted Knapweed Leaves and stems of both spotted and Russian knapweeds are covered in fine hairs, giving the plants a grayish cast.
    [Show full text]
  • ENTO-364 (Introducto
    K. K. COLLEGE OF AGRICULTURE, NASHIK DEPARTMENT OF AGRICULTURAL ENTOMOLOGY THEORY NOTES Course No.:- ENTO-364 Course Title: - Introductory Nematology Credits: - 2 (1+1) Compiled By Prof. T. B. Ugale & Prof. A. S. Mochi Assistant Professor Department of Agricultural Entomology 0 Complied by Prof. T. B. Ugale & Prof. A. S. Mochi (K. K. Wagh College of Agriculture, Nashik) TEACHING SCHEDULE Semester : VI Course No. : ENTO-364 Course Title : Introductory Nematology Credits : 2(1+1) Lecture Topics Rating No. 1 Introduction- History of phytonematology and economic 4 importance. 2 General characteristics of plant parasitic nematodes. 2 3 Nematode- General morphology and biology. 4 4 Classification of nematode up to family level with 4 emphasis on group of containing economical importance genera (Taxonomic). 5 Classification of nematode by habitat. 2 6 Identification of economically important plant nematodes 4 up to generic level with the help of key and description. 7 Symptoms caused by nematodes with examples. 4 8 Interaction of nematodes with microorganism 4 9 Different methods of nematode management. 4 10 Cultural methods 4 11 Physical methods 2 12 Biological methods 4 13 Chemical methods 2 14 Entomophilic nematodes- Species Biology 2 15 Mode of action 2 16 Mass production techniques for EPN 2 Reference Books: 1) A Text Book of Plant Nematology – K. D. Upadhay & Kusum Dwivedi, Aman Publishing House 2) Fundamentals of Plant Nematology – E. J. Jonathan, S. Kumar, K. Deviranjan, G. Rajendran, Devi Publications, 8, Couvery Nagar, Karumanolapam, Trichirappalli, 620 001. 3) Plant Nematodes - Methodology, Morphology, Systematics, Biology & Ecology Majeebur Rahman Khan, Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India.
    [Show full text]
  • Listado De Todas Las Plantas Que Tengo Fotografiadas Ordenado Por Familias Según El Sistema APG III (Última Actualización: 2 De Septiembre De 2021)
    Listado de todas las plantas que tengo fotografiadas ordenado por familias según el sistema APG III (última actualización: 2 de Septiembre de 2021) GÉNERO Y ESPECIE FAMILIA SUBFAMILIA GÉNERO Y ESPECIE FAMILIA SUBFAMILIA Acanthus hungaricus Acanthaceae Acanthoideae Metarungia longistrobus Acanthaceae Acanthoideae Acanthus mollis Acanthaceae Acanthoideae Odontonema callistachyum Acanthaceae Acanthoideae Acanthus spinosus Acanthaceae Acanthoideae Odontonema cuspidatum Acanthaceae Acanthoideae Aphelandra flava Acanthaceae Acanthoideae Odontonema tubaeforme Acanthaceae Acanthoideae Aphelandra sinclairiana Acanthaceae Acanthoideae Pachystachys lutea Acanthaceae Acanthoideae Aphelandra squarrosa Acanthaceae Acanthoideae Pachystachys spicata Acanthaceae Acanthoideae Asystasia gangetica Acanthaceae Acanthoideae Peristrophe speciosa Acanthaceae Acanthoideae Barleria cristata Acanthaceae Acanthoideae Phaulopsis pulchella Acanthaceae Acanthoideae Barleria obtusa Acanthaceae Acanthoideae Pseuderanthemum carruthersii ‘Rubrum’ Acanthaceae Acanthoideae Barleria repens Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. atropurpureum Acanthaceae Acanthoideae Brillantaisia lamium Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. reticulatum Acanthaceae Acanthoideae Brillantaisia owariensis Acanthaceae Acanthoideae Pseuderanthemum laxiflorum Acanthaceae Acanthoideae Brillantaisia ulugurica Acanthaceae Acanthoideae Pseuderanthemum laxiflorum ‘Purple Dazzler’ Acanthaceae Acanthoideae Crossandra infundibuliformis Acanthaceae Acanthoideae Ruellia
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • PCR-RFLP and Sequencing Analysis of Ribosomal DNA of Bursaphelenchus Nematodes Related to Pine Wilt Disease(L)
    Fundam. appl. Nemalol., 1998,21 (6), 655-666 PCR-RFLP and sequencing analysis of ribosomal DNA of Bursaphelenchus nematodes related to pine wilt disease(l) Hideaki IvVAHORI, Kaku TSUDA, Natsumi KANZAKl, Katsura IZUI and Kazuyoshi FUTAI Cmduate School ofAgriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. Accepted for publication 23 December 1997. Summary -A polymerase chain reaction - restriction fragment polymorphism (PCR-RFLP) analysis was used for the discri­ mination of isolates of Bursaphelenchus nematode. The isolares of B. xylophilus examined originared from Japan, the United Stares, China, and Canada and the B. mucronatus isolates from Japan, China, and France. Ribosomal DNA containing the 5.8S gene, the internai transcribed spacer region 1 and 2, and partial regions of 18S and 28S gene were amplified by PCR. Digestion of the amplified products of each nematode isolate with twelve restriction endonucleases and examination of resulting RFLP data by cluster analysis revealed a significant gap between B. xylophllus and B. mucronatus. Among the B. xylophilus isolares examined, Japanese pathogenic, Chinese and US isolates were ail identical, whereas Japanese non-pathogenic isolares were slightly distinct and Canadian isolates formed a separate cluster. Among the B. mucronalUS isolates, two Japanese isolares were very similar to each other and another Japanèse and one Chinese isolare were identical to each other. The DNA sequence data revealed 98 differences (nucleotide substitutions or gaps) in 884 bp investigated between B. xylophilus isolare and B. mucronmus isolate; DNA sequence data of Aphelenchus avenae and Aphelenchoides fragariae differed not only from those of Bursaphelenchus nematodes, but also from each other.
    [Show full text]
  • Hydrangeas for Plant Connoisseurs
    TheThe AmericanAmerican GARDENERGARDENER® TheThe MagazineMagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySocietySociety MayMay / June 2014 Hydrangeas for plant Connoisseurs CharmingCharming NicotianasNicotianas Four-SeasonFour-Season TreesTrees NewNew HerbHerb TrendsTrends Did you know that you can give the American Horticultural Let your home Society a residence, farm or vacation property, gain a charitable work for you! gift deduction, and retain the right to live in the property? A gift of real estate can provide the following benefits: • Produce a substantial charitable income tax deduction • Reduce capital gains taxes • Save estate taxes • Leave a legacy of a greener, healthier, more beautiful America • Membership in the Horticultural Heritage Society We would be pleased to discuss how a gift of real estate can benefit both you and the American Horticultural Society. Please contact Scott Lyons, Director of Institutional Advancement, at [email protected] or (703) 768-5700 ext 127. contents Volume 93, Number 3 . May / June 2014 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM THE AHS Bequest of longtime AHS member Wilma L. Pickard establishes new AHS fellowship for aspiring horticulturists, Susie and Bruce Usrey are Honorary co-Chairs of 2014 Gala, birds of prey visit River Farm during annual Spring Garden Market. 12 AHS MEMBERS MAKING A DIFFERENCE Joan Calder. page 1414 44 GARDEN SOLUTIONS Avoiding or preventing late-blight infestations on tomatoes. 14 CHARMING NICOTIANAS BY RAND B. LEE 46 TRAVELER’S GUIDE TO GARDENS Beloved for their fragrance and attractiveness to pollinators, these The Rotary Botanical Gardens. old-fashioned cottage-garden favorites are back in style. 48 HOMEGROWN HARVEST Sweet and tart crabapples.
    [Show full text]
  • Plant List 2021-08-25 (12:18)
    Plant List 2021-09-24 (14:25) Plant Plant Name Botanical Name in Price Stock Per Unit AFRICAN DREAM ROOT - 1 Silene capensis Yes R92 AFRICAN DREAM ROOT - 2 Silene undulata Yes R92 AFRICAN POTATO Hypoxis hemerocallidea Yes R89 AFRICAN POTATO - SILVER-LEAFED STAR FLOWER Hypoxis rigidula Yes R89 AGASTACHE - GOLDEN JUBILEE Agastache foeniculum No R52 AGASTACHE - HYSSOP, WRINKLED GIANT HYSSOP Agastache rugosa Yes R59 AGASTACHE - LICORICE MINT HYSSOP Agastache rupestris No R59 AGASTACHE - PINK POP Agastache astromontana No R54 AGRIMONY Agrimonia eupatoria No R54 AJWAIN Trachyspermum ammi No R49 ALFALFA Medicago sativa Yes R59 ALOE VERA - ORANGE FLOWER A. barbadensis Yes R59 ALOE VERA - YELLOW FLOWER syn A. barbadensis 'Miller' No R59 AMARANTH - ‘LOVE-LIES-BLEEDING’ Amaranthus caudatus No R49 AMARANTH - CHINESE SPINACH Amaranthus species No R49 AMARANTH - GOLDEN GIANT Amaranthus cruentas No R49 AMARANTH - RED LEAF Amaranthus cruentas No R49 ARTICHOKE - GREEN GLOBE Cynara scolymus Yes R54 ARTICHOKE - JERUSALEM Helianthus tuberosus Yes R64 ARTICHOKE - PURPLE GLOBE Cynara scolymus No R54 ASHWAGANDA, INDIAN GINSENG Withania somniferia Yes R59 ASPARAGUS - GARDEN Asparagus officinalis Yes R54 BALLOON FLOWER - PURPLE Platycodon grandiflorus 'Apoyama' Yes R59 BALLOON FLOWER - WHITE Platycodon grandiflorus var. Albus No R59 BASIL - CAMPHOR Ocimum kilimandscharicum Yes R59 BASIL HOLY - GREEN TULSI, RAM TULSI Ocimum Sanctum Yes R54 BASIL HOLY - TULSI KAPOOR Ocimum sanctum Linn. No R54 BASIL HOLY - TULSI TEMPERATE Ocimum africanum No R54 BASIL HOLY - TULSI
    [Show full text]
  • Gardens and Stewardship
    GARDENS AND STEWARDSHIP Thaddeus Zagorski (Bachelor of Theology; Diploma of Education; Certificate 111 in Amenity Horticulture; Graduate Diploma in Environmental Studies with Honours) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy October 2007 School of Geography and Environmental Studies University of Tasmania STATEMENT OF AUTHENTICITY This thesis contains no material which has been accepted for any other degree or graduate diploma by the University of Tasmania or in any other tertiary institution and, to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by other persons, except where due acknowledgement is made in the text of the thesis or in footnotes. Thaddeus Zagorski University of Tasmania Date: This thesis may be made available for loan or limited copying in accordance with the Australian Copyright Act of 1968. Thaddeus Zagorski University of Tasmania Date: ACKNOWLEDGEMENTS This thesis is not merely the achievement of a personal goal, but a culmination of a journey that started many, many years ago. As culmination it is also an impetus to continue to that journey. In achieving this personal goal many people, supervisors, friends, family and University colleagues have been instrumental in contributing to the final product. The initial motivation and inspiration for me to start this study was given by Professor Jamie Kirkpatrick, Dr. Elaine Stratford, and my friend Alison Howman. For that challenge I thank you. I am deeply indebted to my three supervisors Professor Jamie Kirkpatrick, Dr. Elaine Stratford and Dr. Aidan Davison. Each in their individual, concerted and special way guided me to this omega point.
    [Show full text]
  • Characterization and Functional Importance of Two Glycoside Hydrolase Family 16 Genes from the Rice White Tip Nematode Aphelenchoides Besseyi
    animals Article Characterization and Functional Importance of Two Glycoside Hydrolase Family 16 Genes from the Rice White Tip Nematode Aphelenchoides besseyi Hui Feng , Dongmei Zhou, Paul Daly , Xiaoyu Wang and Lihui Wei * Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China; [email protected] (H.F.); [email protected] (D.Z.); [email protected] (P.D.); [email protected] (X.W.) * Correspondence: [email protected] Simple Summary: The rice white tip nematode Aphelenchoides besseyi is a plant parasite but can also feed on fungi if this alternative nutrient source is available. Glucans are a major nutrient source found in fungi, and β-linked glucans from fungi can be hydrolyzed by β-glucanases from the glycoside hydrolase family 16 (GH16). The GH16 family is abundant in A. besseyi, but their functions have not been well studied, prompting the analysis of two GH16 members (AbGH16-1 and AbGH16-2). AbGH16-1 and AbGH16-2 are most similar to GH16s from fungi and probably originated from fungi via a horizontal gene transfer event. These two genes are important for feeding on fungi: transcript levels increased when cultured with the fungus Botrytis cinerea, and the purified AbGH16-1 and AbGH16-2 proteins inhibited the growth of B. cinerea. When AbGH16-1 and AbGH16-2 expression A. besseyi was silenced, the reproduction ability of was reduced. These findings have proved for the first time that GH16s contribute to the feeding and reproduction of A. besseyi, which thus provides Citation: Feng, H.; Zhou, D.; Daly, P.; novel insights into how plant-parasitic nematodes can obtain nutrition from sources other than their Wang, X.; Wei, L.
    [Show full text]
  • Reaction of Some Rice Cultivars to the White Tip Nematode, Aphelenchoides Besseyi, Under Field Conditions in the Thrace Region of Turkey
    Turkish Journal of Agriculture and Forestry Turk J Agric For (2015) 39: 958-966 http://journals.tubitak.gov.tr/agriculture/ © TÜBİTAK Research Article doi:10.3906/tar-1407-120 Reaction of some rice cultivars to the white tip nematode, Aphelenchoides besseyi, under field conditions in the Thrace region of Turkey 1 2, 1 1 1 1 Adnan TÜLEK , İlker KEPENEKÇİ *, Tuğba Hilal ÇİFTCİGİL , Halil SÜREK , Kemal AKIN , Recep KAYA 1 Thrace Agricultural Research Institute, Edirne, Turkey 2 Department of Plant Protection, Faculty of Agriculture, Gaziosmanpaşa University, Taşlıçiftlik, Tokat, Turkey Received: 21.07.2014 Accepted/Published Online: 06.05.2015 Printed: 30.11.2015 Abstract: The objective of this study was to evaluate the reactions of 41 rice cultivars to Aphelenchoides besseyi under field conditions in 2012 at the Thrace Agricultural Research Institute. The experiments were conducted as split plots in a randomized complete block design with 3 replications. An infected plot and an uninfected control plot were the main plots; the cultivars were subplots. As a sign of nematode damage, white tip infection ratio on the rice caused by nematodes was determined in the experiments, and the losses in yield components for the rice cultivars were calculated. There were decreases both in the grain number per panicle (by 38.3%) and in the panicle weight (by 49.7%) in the infected plot with symptoms of white tip nematode. The Ribe cultivar had the highest yield losses due to nematode damage, with 52.1%. The Asahi cultivar, which is a resistant control, had the lowest yield losses with 7.8%. There was a significant positive correlation (r = 0.5068) between the average chlorophyll values (SPAD) in the flag leaf and average white tip ratio (%).
    [Show full text]