Asparagus Densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop

Total Page:16

File Type:pdf, Size:1020Kb

Asparagus Densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop TAXON: Asparagus densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop Taxon: Asparagus densiflorus (Kunth) Jessop Family: Asparagaceae Common Name(s): asparagus fern Synonym(s): Asparagopsis densiflora Kunth foxtail fern Asparagus myriocladus Baker plume asparagus Protasparagus densiflorus (Kunth) Oberm. regal fern Sprenger's asparagus fern Assessor: Chuck Chimera Status: Assessor Approved End Date: 16 Feb 2021 WRA Score: 15.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tuberous Geophyte, Naturalized, Environmental Weed, Dense Cover, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 y 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans Creation Date: 16 Feb 2021 (Asparagus densiflorus Page 1 of 18 (Kunth) Jessop) TAXON: Asparagus densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop Qsn # Question Answer Option Answer 408 Creates a fire hazard in natural ecosystems 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Tolerates a wide range of soil conditions (or limestone 410 y=1, n=0 y conditions if not a volcanic island) 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 y 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n Geophyte (herbaceous with underground storage organs 504 y=1, n=0 y -- bulbs, corms, or tubers) Evidence of substantial reproductive failure in native 601 y=1, n=0 n habitat 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally 604 Self-compatible or apomictic y=1, n=-1 y 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 n 607 Minimum generative time (years) Propagules likely to be dispersed unintentionally (plants 701 y=1, n=-1 y growing in heavily trafficked areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 n 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 n 706 Propagules bird dispersed y=1, n=-1 y 707 Propagules dispersed by other animals (externally) y=1, n=-1 n 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) Evidence that a persistent propagule bank is formed (>1 802 y=1, n=-1 n yr) 803 Well controlled by herbicides 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 y Effective natural enemies present locally (e.g. introduced 805 biocontrol agents) Creation Date: 16 Feb 2021 (Asparagus densiflorus Page 2 of 18 (Kunth) Jessop) TAXON: Asparagus densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop Supporting Data: Qsn # Question Answer 101 Is the species highly domesticated? n Source(s) Notes Whistler, W.A. 2000. Tropical Ornamentals: A Guide. "Several cultivars are recognized based on differences in branching Timber Press, Portland, OR and habit." [No evidence of domestication] 102 Has the species become naturalized where grown? Source(s) Notes WRA Specialist. (2021). Personal Communication NA 103 Does the species have weedy races? Source(s) Notes WRA Specialist. (2021). Personal Communication NA Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet High tropical" for "tropical or subtropical" Source(s) Notes "Native USDA, Agricultural Research Service, National Plant Africa Germplasm System. (2021). Germplasm Resources SOUTHERN AFRICA: Lesotho, Eswatini, South Africa [KwaZulu- Information Network (GRIN-Taxonomy). National Natal, Free State, Eastern Cape, Northern Cape, Gauteng, Limpopo, Germplasm Resources Laboratory, Beltsville, Maryland. Mpumalanga]" https://npgsweb.ars-grin.gov/. [Accessed 11 Feb 2021] 202 Quality of climate match data High Source(s) Notes USDA, Agricultural Research Service, National Plant Germplasm System. (2021). Germplasm Resources Information Network (GRIN-Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland. https://npgsweb.ars-grin.gov/. [Accessed 11 Feb 2021] Creation Date: 16 Feb 2021 (Asparagus densiflorus Page 3 of 18 (Kunth) Jessop) TAXON: Asparagus densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop Qsn # Question Answer 203 Broad climate suitability (environmental versatility) n Source(s) Notes Gilman, E.F., Klein, R.W., and Hansen, G.Gilman, E.F. (2018). Asparagus densiflorus ͚Myers͛Myers Asparagus Fern. FPS-52. Revised. IFAS, University of Florida, "USDA hardiness zones: 9B through 11" Gainesville. https://edis.ifas.ufl.edu/. [Accessed 12 Feb 2021] Missouri Botanical Garden. (2021). Asparagus densiflorus 'Myersii'. http://www.missouribotanicalgarden.org. "Zone: 9 to 11" [Accessed 12 Feb 2021] Native or naturalized in regions with tropical or 204 y subtropical climates Source(s) Notes "Asparagus densiflorus (Kunth) Jessop New island record Commonly cultivated, this taxon was first reported as a naturalized species in Hawai͚i by Lorence & Flynn (1999: ϰʹϱͿ͕who cited specimens collected on the island of Kaua͚i. Later, it was reported from West Maui (Oppenheimer & Bartlett, 2000: 6). It has also escaped Oppenheimer, H. L. (2003). New plant records from Maui cultivation and is naturalized on the Big Island, and has been and Hawai͚i Counties. Bishop Museum Occasional Papers. observed to be spreading from plantings at Mänele Bay, Läna͚i into 73: 3-30 irrigated, landscaped areas nearby, and will likely become established there in the near future as well. Material examined: HAWAI͚I: S. Kohala Dist, ͚Anaeho͚omalu, 12 m, edge of landscaped area in Prosopis thicket, 11 Mar 2001, Oppenheimer & S. Holt H30119." Randall, R.P. (2017). A Global Compendium of Weeds. 3rd "Preferred Climate/s: Mediterranean, Subtropical, Tropical" Edition. Perth, Western Australia. R.P. Randall Does the species have a history of repeated 205 y introductions outside its natural range? Source(s) Notes Weber, E. 2017. Invasive Plant Species of the World, 2nd "The plant is widely used in horticulture as a ground cover, and Edition: A Reference Guide to Environmental Weeds. CABI several cultivars have been developed." Publishing, Wallingford, UK 301 Naturalized beyond native range y Source(s) Notes Creation Date: 16 Feb 2021 (Asparagus densiflorus Page 4 of 18 (Kunth) Jessop) TAXON: Asparagus densiflorus SCORE: 15.0 RATING: High Risk (Kunth) Jessop Qsn # Question Answer "Asparagus densiflorus (Kunth) Jessop New island record Commonly cultivated, this taxon was first reported as a naturalized species in Hawai͚i by Lorence & Flynn (1999: ϰʹϱͿ͕who cited specimens collected on the island of Kaua͚i. Later, it was reported from West Maui (Oppenheimer & Bartlett, 2000: 6). It has also escaped Oppenheimer, H. L. (2003). New plant records from Maui cultivation and is naturalized on the Big Island, and has been and Hawai͚i Counties. Bishop Museum Occasional Papers. observed to be spreading from plantings at Mänele Bay, Läna͚i into 73: 3-30 irrigated, landscaped areas nearby, and will likely become established there in the near future as well. Material examined: HAWAI͚I: S. Kohala Dist, ͚Anaeho͚omalu, 12 m, edge of landscaped area in Prosopis thicket, 11 Mar 2001, Oppenheimer & S. Holt H30119." "Asparagus densiflorus (Kunth) Jessop New island record Previously reported from Kaua͚i (Lorence & Flynn, 1999) and Maui (Oppenheimer & Bartlett, 2000), this widely planted ornamental Kraus, F. (2003). New records of alien plants and animals native to southern Africa is common at its newly reported locality on in Hawai͚i. Bishop Museum Occasional Papers 74: 76-78 O͚ahu. Material examined: O͚AHU: Honolulu: Makiki, eastern slope of east side of Maunalaha Trail, 30 Mar 2001, F. Kraus, Kraus 02 (BISH)." "Asparagus densiflorus (Kunth) Jessop New island record This South African species (Neal, 1965: 209) is widely planted in resort and home landscaping and was first reported as naturalized by Lorence & Oppenheimer, H.L. & Bartlett, R.T. (2000). New plant Flynn (1999: ϰʹϱͿ͘It is naturalized on Maui as well. The voucher is records from Maui, O͚ahu, and the Hawai͚i Islands. Bishop referable to cultivar ͚Sprengeri͛͘Material examined: MAUI: West Museum Occasional Papers 64: 1-10 Maui, Lahaina District, Honokahua, near Häwea Pt, on coastal bluffs and in clay soil in Scaevola coastal shrubland, 12 m, 12 Sep 1999, Oppenheimer H99909." "Asparagus densiflorus (Kunth) Jessop New island record. Popular in cultivation and recently documented as a naturalized element of the Hawaiian flora from the islands of Kaua͚i (Lorence & Flynn 1999: ϰʹ ϱͿ͕O͚ahu (Kraus 2003: 76), Maui (Oppenheimer & Bartlett 2000: 6), Oppenheimer, H. (2007). New plant records from and Hawai͚i (Oppenheimer 2003: 14), A. densiflorus was observed at Moloka͚ŝ͕>ĈŶĂ͚i, Maui, and Hawai͚i for 2006. Bishop least as early as 2000 to be escaping from cultivation on Läna͚i, and Museum Occasional Papers 96:17-34 can now be considered naturalized there.
Recommended publications
  • Interior Plants: Selection and Care
    AZ1025 Interior Plants: Selection and Care 5/98 ELIZABETH D AVISON Some may be purchased at relatively low cost from garden Lecturer, Plant Sciences centers or from garden catalogs. Their readings of Low, Medium and High can give “ballpark figures,” and they can eliminate much of the guesswork in selecting plants (originally authored by Dr. Charles Sacamano, Extension that are adapted to light levels in a given location. Horticulture Specialist, and Dr. Douglas A. Bailey, If sunlight is the major light source you may determine Assistant Professor, Plant Sciences) which category your indoor location falls into by using the following descriptions: Almost any indoor environment is more pleasant and High Light: areas within four feet of large south-east or attractive when living plants are a part of the setting. In west facing windows. apartments, condominiums and single family residences, plants add warmth, personality and year-round beauty. Medium Light: locations in a range of four to eight feet Shopping centers, hotels and resorts take full advantage of from south and east windows and west windows that the colorful, relaxed atmosphere created by green growing do not receive direct sun. things. Offices, banks and other commercial buildings rely Low Light: areas more than eight feet from windows as in on interior plants to humanize the work environment and the center of a room, a hallway or an inside wall. increase productivity. Northern exposures often fall into this category, even There are other important, often overlooked functions close to the window. Many locations that receive only performed by indoor plants. These include directing or artificial light are also low light situations.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Botanischer Garten Der Universität Tübingen
    Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22
    [Show full text]
  • Pdf (536.04 K)
    J. Plant Production, Mansoura Univ., Vol. 4 (3): 417 - 423, 2013 CHEMOTAXONOMIC STUDY OF FIVE MONOCOT SPECIES FROM NORTH- EASTERN SUDAN Wasfi, M. A., I. Madani and Fatima El - Mubarak Botany Department Faculty of Science, Univ. of K. Sudan ABSTRACT Alkaloids, flavonoids, triterpenes, sterols and saponins were qualitatively screened in different organs of five monocotyledonous species belonging to different genera: Allium cepa L., Asparagus densiflorus (Kunth) Jessop, Pancratium tortuosum Herbert., Kniphofia nubigena Mildr., and Urginea maritima (L.) Baker. Phenolic compounds were separated using thin layer chromatography to ascertain their relative phylogenetic position. Data collected from the qualitative phytochemical analysis, paired affinity, group affinity and isolation value reflected taxonomically significant information supported the inclusion of these species in different families by many taxonomists in the most recent classification systems. Keywords: Monocot classification, chemotaxonomy, TLC, phenolics. INTRODUCTION Monocot classification had undergone considerable revision in the past four decades particularly in recent years. Cronquist (1968, 1981) and Hutchinson (1973) in their systems of classification assigned the five species selected for the present study: Asparagus, Urginea, Pancratium and Allium to the family Liliaceae and Kniphofia to the family Aloaceae and both families to the order liliales . Dahlgren et al. (1985) placed Kniphofia in Asphodelaceae, Pancratium in Amaryllidaceae Urigina in Hyacinthaceae, Asparagus
    [Show full text]
  • Medicinal Properties of Selected Asparagus Species: a Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele
    Chapter Medicinal Properties of Selected Asparagus Species: A Review Polo-Ma-Abiele Hildah Mfengwana and Samson Sitheni Mashele Abstract Asparagus species are naturally distributed along Asia, Africa, and Europe and are known to have numerous biological properties. This review article was aimed to provide an organized summary of current studies on the traditional uses, phy- tochemistry, and pharmacological and toxicological studies of Asparagus laricinus Burch., Asparagus africanus Lam., Asparagus officinalis L., Asparagus racemosus Willd., and Asparagus densiflorus (Kunth) Jessop to attain and establish new insights for further researches. Information used in this review was obtained from electronic database including PubMed central, Google scholars, Science direct, Scopus, and Sabinet. Based on the present findings, the existing literature still presents some breaches about the mechanism of action of various constituents of these plants, and their relation to other plant compounds in poly-herbal formulations, as well as their long-term use and safety. More in-depth studies are still needed for active compounds and biological activities of Asparagus laricinus, Asparagus africanus, and Asparagus densiflorus. Therefore, innumerable opportunities and possibilities for investigation are still available in novel areas of these plants for future research stud¬ies. It can be concluded that all selected Asparagus species have tremendous potential to improve human health and the pharmacological activities of these plants can be attributed to bioactive phytochemicals they possess. Keywords: Asparagaceae, Asparagus africanus lam., Asparagus densiflorus (kunth) Jessop, Asparagus laricinus Burch., Asparagus officinalis L., Asparagus racemosus Willd., pharmacological actions, phytochemistry 1. Introduction Historically, plants were used for numerous purposes for mankind in general, inter alia, feeding and catering, culinary spices, medicine, various forms of cosmetics, symbols in worship and for a variety of ornamental goods.
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Review on Therapeutic and Pharmaceutically Important
    iochemis t B try n & la P P h f Iqbal et al., J Plant Biochem Physiol 2017, 5:1 y o s l i Journal of o a l n DOI: 10.4172/2329-9029.1000180 o r g u y o J ISSN: 2329-9029 Plant Biochemistry & Physiology ReviewResearch Article Article Open Access Review on Therapeutic and Pharmaceutically Important Medicinal Plant Asparagus officinalis L Muhammad Iqbal*, Yamin Bibi, Naveed Iqbal Raja, Muhammad Ejaz, Mubashir Hussain, Farhat Yasmeen, Hafiza Saira and Muhammad Imran Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Pakistan Abstract The use of medicinal plants is as old as human civilization. About 600-700 plants species in Pakistan are used for preparation of ayurvedic, unani and homeopathic drugs. Asparagus officinalis a sub-erect prickly shrub with white tuberous root usually is of prime importance in this regard. It naturally occurs in areas of southern Africa, Europe, Australia and Asia. Nutritive tonics are prepared from its roots and it is also a source of a nutritious starch, low in calories and is very low in sodium and good source of vitamins. This plant offers multiple health benefits because of presence of ingredients like proteins, alkaloids, saponins and tannins that help in improving fertility and vitality in women and men. Pharmacological activities of Asparagus include anticancer, antioxidant, antifungal, antibacterial, anti-dysenteric, anti-inflammatory, and anti-abortifacient, anti-oxytoxic, antiulcer, hypertensive and anticoagulant effects. Moreover, it is reported to reduce the risk of constipation, diarrhea, osteoporosis, obesity, cardiovascular disease, rheumatism and diabetes. Now days, the demand of such medicinally important plants has increased all over the world.
    [Show full text]
  • Molecular Data and Phylogeny of Family Smilacaceae
    Pak. J. Bot., Special Issue (S.I. Ali Festschrift) 42: 111-116, 2010. MOLECULAR DATA AND PHYLOGENY OF FAMILY SMILACACEAE ZABTA K. SHINWARI1 AND SHEHLA SHINWARI2 1Dept. of Biotechnology, Quaid-i-Azam University-Islamabad 2Dept. of Botany, PMAS Arid Agriculture University, Rawalpindi Abstract Family Smilacaceae’s higher order taxonomy remained disputed for many years. It was treated as an order “Smilacales” and was also placed under Liliales by several taxonomists. Even some considered as part of family Liliacaeae. In present paper, we investigated the family’s higher order phylogeny and also compared its rbcL gene sequence data with related taxa to elucidate its phylogeny. The data suggests that its family stature is beyond dispute because of its advanced karyotype, woody climbing habit and DNA sequence data. The data suggest that Smilacaceae may be a sister group of order Liliales and it forms a clear clade with the order. Introduction The Family Smilacaceae was first recognized by Vent. However, its taxonomic status remained controversial. Smilacaceae is a small family with only 3 genera and about 320 species. (Mabberley 2008, Conran,1998) In Pakistan it is represented by one genus and 4 species including a cultivated species (Ghazanfar, 1977). This family is mainly distributed in tropics but extending to temperate regions of both the hemispheres. Bantham and Hooker, (1883); Krause (1930) considered the genera of Smilacaceae under tribe Polygonatae of the family Liliaceae But majority of the present day taxonomists treat them under an independent family Smilacaceae because of its petiolar sheath tendrils, 1-chambered anther cells, sessile stigmas and mostly climbing habit (Fig.
    [Show full text]
  • Protasparagus Densiflorous Asparagus Aethiopicus Asparagus Sprengeri
    GROUND (BASKET) Other common names: ASPARAGUS Basket asparagus Asparagus aethiopicus L. Asparagus fern Sprengi’s fern Note that this name has previously Bushy asparagus been misapplied as Asparagus Emerald asparagus densiflorus (Kunth) Jessop (Batchelor and Scott 2006). Other species names: Protasparagus densiflorous Asparagus aethiopicus Ground (Basket) Asparagus: Asparagus sprengeri Flora of NSW Section 05 : Ground (Basket) Asparagus Potted ground asparagus: Photo DWLBC Archive Ground Asparagus gone wild: Photo DWLBC Archive 5 Asparagus Weeds Weeds Best Best Practice Practice Management Management Manual Manual Asparagus Weeds Best Practice Management Manual 5 Some confusion exists amongst the weed management community as to GROUND (BASKET) Other common names: which of the two species, Asparagus aethiopicus and A. densiflorus, are present within Australia. Possibly both occur, but more study is required to ASPARAGUS Basket asparagus get a definitive answer as to which species occurs and at what location within the country. At the time of writing this manual, it was agreed Asparagus aethiopicus L. Asparagus fern that both species should be treated as the same plant and managed Sprengi’s fern accordingly. Ground asparagus is a multi-stemmed, bushy, prostate, perennial shrub, which forms a thick mat of Note that this name has previously Bushy asparagus tuberous roots. It grows particularly well in shaded areas and in low fertility, shallow, sandy soils. The weed is prevalent in coastal, urban and bushland sites, particularly around housing developments been misapplied as Asparagus Emerald asparagus where disturbances by machinery provide ongoing invasion opportunities. In cultivation, basket asparagus seedlings produce water storage tubers at 2 weeks after densiflorus (Kunth) Jessop (Batchelor germination, with flowering about 20 months after germination (Vivian-Smith unpublished data).
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Pinal AMA Low Water Use/Drought Tolerant Plant List
    Arizona Department of Water Resources Pinal Active Management Area Low-Water-Use/Drought-Tolerant Plant List Official Regulatory List for the Pinal Active Management Area Fourth Management Plan Arizona Department of Water Resources 1110 West Washington St. Ste. 310 Phoenix, AZ 85007 www.azwater.gov 602-771-8585 Pinal Active Management Area Low-Water-Use/Drought-Tolerant Plant List Acknowledgements The Pinal Active Management Area (AMA) Low-Water-Use/Drought-Tolerant Plants List is an adoption of the Phoenix AMA Low-Water-Use/Drought-Tolerant Plants List (Phoenix List). The Phoenix List was prepared in 2004 by the Arizona Department of Water Resources (ADWR) in cooperation with the Landscape Technical Advisory Committee of the Arizona Municipal Water Users Association, comprised of experts from the Desert Botanical Garden, the Arizona Department of Transporation and various municipal, nursery and landscape specialists. ADWR extends its gratitude to the following members of the Plant List Advisory Committee for their generous contribution of time and expertise: Rita Jo Anthony, Wild Seed Judy Mielke, Logan Simpson Design John Augustine, Desert Tree Farm Terry Mikel, U of A Cooperative Extension Robyn Baker, City of Scottsdale Jo Miller, City of Glendale Louisa Ballard, ASU Arboritum Ron Moody, Dixileta Gardens Mike Barry, City of Chandler Ed Mulrean, Arid Zone Trees Richard Bond, City of Tempe Kent Newland, City of Phoenix Donna Difrancesco, City of Mesa Steve Priebe, City of Phornix Joe Ewan, Arizona State University Janet Rademacher, Mountain States Nursery Judy Gausman, AZ Landscape Contractors Assn. Rick Templeton, City of Phoenix Glenn Fahringer, Earth Care Cathy Rymer, Town of Gilbert Cheryl Goar, Arizona Nurssery Assn.
    [Show full text]
  • Checklist of Vascular Plant Flora of Ventura County, California by David L
    Checklist of Vascular Plant Flora of Ventura County, California By David L. Magney Abundance Scientific Name Common Name Habit Family Status Abies concolor (Gordon & Glendinning) Lindl. ex Hildebr. White Fir T Pinaceae U ? Abronia latifolia Eschsch. Coastal or Yellow Sand-verbena PH Nyctaginaceae X Abronia maritima Nutt. ex S. Watson Red or Sticky Sand-verbena, Beach PH Nyctaginaceae S, 4.2 Abronia maritima Nutt. ex S. Watson X A. umbellata Lam. Hybrid Sand-verbena AH Nyctaginaceae R Abronia neurophylla Standl. Beach Sand-verbena PH Nyctaginaceae R, T Abronia pogonantha Heimerl Desert Sand-verbena AH Nyctaginaceae R Abronia turbinata Torr. ex S. Watson Turbinate Sand-verbena A/PH Nyctaginaceae R Abronia umbellata Lam. ssp. umbellata Beach Sand-verbena PH Nyctaginaceae S Abronia villosa var. aurita (Abrams) Jeps. Woolly Sand-verbena AH Nyctaginaceae R, 1B.1 * Abutilon theophrasti Medikus Velvet Leaf AH Malvaceae R * Acacia baileyana F. Muell. Cootamundra Wattle S/T Fabaceae R * Acacia cultriforms A. Cunn. ex G. Don Sickle-leaved Acacia S Fabaceae R * Acacia dealbata Link Silver Wattle T Fabaceae R * Acacia longifolia (Andrews) Willd. Golden Wattle S/T Fabaceae R * Acacia retinodes Schldl. Everblooming Acacia T Fabaceae R * Acacia saligna (Labill.) H.L. Wendl. Golden Wreath Wattle S/T Fabaceae R Acamptopappus sphaerocephalus (Har. & Gray) Gray var. sphaerocephalus Rayless Goldenhead S Asteraceae R Acanthomintha obovata var. cordata Jokerst Heartleaf Thornmint AH Lamiaceae U, 1B.2 Acanthoscyphus parishii (Parry) Small var. parishii Parish Oxytheca AH Polygonaceae R, 4.2 Acanthoscyphus parishii var. abramsii (E.A. McGregor) Reveal Abrams Oxytheca AH Polygonaceae R, 1B.2 Acer macrophyllum Pursh Bigleaf Maple T Sapindaceae S Acer negundo var.
    [Show full text]