Process for Disproportionating Monomethylamine Using Zeolitic Catalystto Produce Dimethylamine

Total Page:16

File Type:pdf, Size:1020Kb

Process for Disproportionating Monomethylamine Using Zeolitic Catalystto Produce Dimethylamine Europâisches Patentamt European Patent Office (îj) Publication number: 0 026 071 Office européen des brevets Bl 12 EUROPEAN PATENT SPECIFICATION @ Dateof publication of patent spécification: 27.07.83 © Int. Cl.3: C 07 C 85/02, C 07 C 87/08 @ Application number: 80303181.4 (g) Date of filing: 10.09.80 (54) Process for disproportionating monomethylamine using zeolitic catalystto produce dimethylamine. (30) Priority: 1 1 .09.79 US 74419 (73) Proprietor: E.l. DU PONT DE NEMOURS AND 06.06.80 US 154482 COMPANY Légal Department 1 007 Market Street Wilmington Delaware 19898 (US) (43) Date of publication of application: 01.04.81 Bulletin 81/13 (72) Inventor: Weigert, Frank Julian Stratford Apts., Apt. J-1 0 Shipley & Naamans (45) Publication of the grantof the patent: Roads 27.07.83 Bulletin 83/30 Wilmington Delaware 1 981 0 (US) (84) Designated Contracting States: (74) Représentative: Woodcraft, David Charles et al, BE DE FR GB IT NL BROOKES & MARTIN High Holborn House 52/54 High Holborn London.WC1V6SE (GB) (56) Références cited: US - A - 1 926 691 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have beenfiled until the opposition fee has been paid. (Art. 99(1 ) European patent convention). Courier Press, Leamington Spa, England. This invention relates to an improved preparation of dimethylamine by a catalytic dispropor- tionation of monomethylamine. It is well known in the art that the catalyzed reaction of methanol and ammonia can be employed to produce mono-, di- and/or trimethylamine. To facilitate the formation of any one of the methylamines various expedients can be used. For example, it is known that the use of dimethyl ether in conjunction with or in place of methanol, recycling unwanted methylamines, the use of varying molar ratios of the reactants and the use of specific dehydrating or aminating catalysts can be employed to alter the relative amounts of the various amines in the product. Exemplary, but not intended to be all inclusive, of such art, U.S. 3,278,598 discloses an improved, Raney nickel-catalyzed, liquid phase process of reacting primary and secondary alcohols and ammonia, the improvement comprising the use of a rhodium, palladium or ruthenium cocatalyst, to provide increased formation of secondary amine. Similarly, U.S. 3,387,032 discloses a catalytic process for providing increased amounts of dimethylamine from methanol and/or dimethyl ether and ammonia, using as the catalyst a silica gel-based alumina which has been partially steam deactivated and then impregnated with silver phosphate, rhenium heptasulfide, molybdenum sulfide or cobalt sulfide. U.S. 2,394,515 and 2,394,516 disclose catalytic processes for preparing polyalkylamines, with lesser quantities of the monoalkylamine, from an alcohol and/or ether of 1-5 carbon atoms and ammonia, using as the catalyst an aluminum oxide or salt which has been coated, first with silica and then with a vanadium salt or molybdenum oxide. The related U.S. 2,349,222 utilizes as the catalyst a granular alumina which has been coated with a nickel, cobalt or chromium oxide hydrogenation/dehydro- genation catalyst. U.S. 2,456,599 discloses that higher amounts of mono- and dimethylamine, and a reduced amount of trimethylamine, can be achieved in the catalyzed process wherein water is introduced along with the methanol and ammonia. U.S. 1,799,722 and U.S. Reissue 19,632 disclose catalytic processes wherein trimethylamine is introduced with the methanol and ammonia to suppress the formation of trimethylamine and provide increased amounts of dimethylamine. U.S. 1,992,935 discloses a catalytic process for preparing a mixture of primary, secondary and tertiary methylamines, principally dimethylamine, from methanol and ammonia, using as the catalyst a dehydrating oxide supported on a porous rigid gel such as silica gel. British 422,563 discloses a catalytic process for producing secondary amine by employing the primary amine as starting material in addition to ammonia and alcohol. Restelli et al. in A.I.Ch.E. Journal, Vol. 12, No. 2, 292-296, March, 1966, describe studies of transmethylation reactions of monomethylamine and dimethylamine over montmorillonite, a hydrated magnesium/calcium oxide, containing aluminosilicate. With the reactions being carried out at about 320-371 °C, at low conversions the monomethylamine is converted to dimethylamine, the rate being directly proportional to the amine partial pressure, thus indicating that adsorption of monomethylamine on the catalyst surface is rate-determining. U.S. 1,926,691 discloses the disproportionation of monomethylamine over oxide catalysts, including aluminum silicate (silica-alumina) and partially dehydrated alumina. In the only example given, the disproportionation of monomethylamine over anhydrous alumina is highly selective for the production of dimethylamine. All the oxide catalysts disclosed are suggested to be equivalent in this regard, being broadly classified as amination catalysts. U.S. 3,384,667 discloses a process for producing monosubstituted and disubstituted amines, in preference to trisubstituted amines, by reacting an alcohol and ammonia over a dehydrated crystalline aluminosilicate catalyst having pores of a diameter that pass the monosubstituted and disubstituted amine products but not the trisubstituted amine products. The related U.S. 4,082,805 discloses a process for producing primary aliphatic amines, in preference to secondary and tertiary amines, from a C,-Cs alcohol or ether and ammonia over a natural or synthetic dehydrated crystalline aluminosilicate having the structure of ZSM-5, ZSM-11 or ZSM-21, at 300-5000C at one atmosphere to 1000 psig pressure, the feeds of alcohol or ether and ammonia being within the ratio 1:1 to 5:1. Methylamines presently are generally produced commercially by a continuous process from methanol and ammonis, using an amorphous silica-alumina catalyst. At moderate methanol conversions such processes generally produce more trimethylamine than mono- and dimethylamine (at very low conversions monomethylamine is the major product). Because of its greater usage industrially as a chemical intermediate dimethylamine is the most desirable methylamine product, with monomethylamine being next most preferred. Production of the maximum amounts of monomethylamine and dimethylamine is achieved when equilibrium is reached, at about 100% methanol conversion. However, the relative amounts of the three amines produced at equilibrium depend, to a large extent, on the carbon/nitrogen (C/N) ratio, that is, the methanol/ammonia ratio in the reactants. At carbon/nitrogen ratios of about one the product mixture contains, on a mole basis, about 55% ammonia, 22% trimethylamine (TMA), 12% monomethylamine (MMA) and 12% dimethylamine (DMA). The product mixture can be separated and the less desirable methylamines can be recycled. However, recycling monomethylamine provides only about 10% dimethylamine per pass, at renewed equilibrium, with most of the monomethylamine being converted to trimethylamine and ammonia. At no C/N ratio, at equilibrium, is dimethylamine the favored product. The synthesis of methylamines is distinguishable from the synthesis of ethylamines. For example, the thermodynamics of the ethylamine reactions corresponding to those discussed above are such that the formation of diethylamine is favored at an ethyl/nitrogen ratio of about 2. This, the production of dimethylamine is substantially more complex and difficult than is the production of diethylamine, using similar processes. An object of this invention, therefore, is to provide an improved process for converting monomethylamine directly to dimethylamine and ammonia, to the substantial exclusion of trimethylamine, thus obviating production of the least desirable methylamine and the concomitant recovery and recycling processes associated therewith. Another object is to provide a process which uses a catalyst which can accomplish this objective in the presence of water, such as water which may be present along with the monomethylamine. Other objects will become apparent hereinafter. The accompanying drawings forming a material part of this disclosure provide plots showing the selectivity of the catalyst of the invention process (Figure 3), as compared to the use of a conventional amorphous silica-alumina catalyst (Figure 1) and a conventional alumina catalyst (Figure 2), both of which are outside the invention, in converting monomethylamine to dimethylamine. More specifically, the drawings provide plots showing the percentages of dimethylamine in the dimethylamine/trimethylamine products obtained at varying conversions of monomethylamine. The drawings are based on data provided in the examples and experiments. The silica-alumina catalyst represented in Figure 1 may be seen to be non-selective whether the system is dry or contains water. The alumina catalyst represented in Figure 2 may be seen to be selective when dry but non-selective when water is present in the system. The natural ferrierite catalyst represented in Figure 3 may be seen to be selective whether the system is dry or contains water. For further comprehension of the invention, and of the objects and advantages thereof, reference may be made to the following description and accompanying drawings and to the appended claims
Recommended publications
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • 2,2'-Iminodi(Ethylamine)
    2,2’-Iminodi(ethylamine) (CAS No: 111-40-0) Health-based Reassessment of Administrative Occupational Exposure Limits Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands No. 2000/15OSH/153 The Hague, October 27, 2005 Preferred citation: Health Council of the Netherlands: Committee on Updating of Occupational Exposure Limits. 2,2’-Iminodi(ethylamine); Health-based Reassessment of Administrative Occupational Exposure Limits. The Hague: Health Council of the Netherlands, 2005; 2000/15OSH/153. all rights reserved 1 Introduction The present document contains the assessment of the health hazard of 2,2’- iminodi(ethylamine), in this document referred to as DETA (diethylenetriamine), by the Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands. The first draft of this document was prepared by AAE Wibowo, Ph.D. (Coronel Institute, Academic Medical Centre, Amsterdam, the Netherlands). The evaluation of the toxicity of DETA has been based on the reviews by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (And94), the Swedish Criteria Group (Lun95), and the American Conference of Governmental Occupational Hygienists (ACGIH) (ACG96). Where relevant, the original publications were reviewed and evaluated as will be indicated in the text. In addition, in December 1997, literature was searched in the databases Medline, Chemical Abstracts, Embase (starting from 1966, 1970, and 1988, respectively), and HSELINE, NIOSHTIC, CISDOC, and MHIDAS (backwards from 1997) and Poltox (Toxline, Cambr Sc Abstr, FSTA) (backwards from 1994), using the following key words: diethylenetriamine, aminoethylethanediamine, diaminodiethylamine, iminobisethylamine, and 111- 40-0. In July 2000, the President of the Health Council released a draft of the document for public review.
    [Show full text]
  • Amine Oxide SIAR
    OECD SIDS AMINE OXIDES SIDS Initial Assessment Report For SIAM 22 Paris, France, 18-21 April 2006 Category Name: Amine Oxides CAS Numbers: 1643-20-5 1-Dodecanamine, N,N-dimethyl-, N-oxide 3332-27-2 1-Tetradecanamine, N,N-dimethyl-, N-oxide 70592-80-2 Amines, C10-16-alkyldimethyl, N-oxides 68955-55-5 Amines, C12-18-alkyldimethyl, N-oxides 2605-79-0 Decanamine, N,N-dimethyl-, N-oxide 7128-91-8 Hexadecanamine, N,N-dimethyl-, N-oxide 2571-88-2 Octadecanamine, N,N-dimethyl-, N-oxide 61788-90-7 Amine oxides, cocoalkyldimethyl 85408-48-6 Amines, C10-18-alkyldimethyl, N-oxides 85408-49-7 Amines, C12-16-alkyldimethyl, N-oxides 61791-47-7 Ethanol, 2,2'-iminobis-, N-coco alkyl derivs., N- oxides 2530-44-1 Ethanol, 2,2'-(dodecyloxidoimino)bis- 14048-77-2 Ethanol, 2,2'-(octadecyloxidoimino)bis- 61791-46-6 Ethanol, 2,2'-iminobis-, N-tallow alkyl derivs., N- oxides 93962-62-0 Ethanol, 2,2'-[(9Z)-9-octadecenyloxidoimino]bis- 3. Sponsor Country: United States 4. Shared Partnership with: Amine Oxides Consortium 5. Roles/Responsibilities of Industry was the main preparer; U.S. EPA was the main reviewer the Partners: Name of industry sponsor or Amine Oxides Consortium consortium Process used Industry coalition conducted a comprehensive literature search, including all generally accepted databases, reference books, unpublished studies and data in company files, and prepared first drafts; U.S. EPA reviewed and edited drafts to achieve a final document. 6. Sponsorship History How was the chemical or The industry coalition agreed to sponsor AOs in the SIDS-ICCA category brought into the program, with the U.S.
    [Show full text]
  • United States Patent Office Patented Aug
    3,755,559 United States Patent Office Patented Aug. 28, 1973 1. 2 of 11 to 18 carbon atoms. Soaps of dicarboxylic acids 3,755,559 may also be used such as the soaps of dimerized linoleic HIGH-LATHERNG CONDITIONING SHAMPOO COMPOSTON acid. Soaps of such other higher molecular weight acids Gordon Trent Hewitt, Upper Montclair, N.J., assignor to such as rosin or tall oil acids, e.g. abietic acid, may also Colgate-Palmolive Company, New York, N.Y. be employed. Specific examples include triethanolamine No Drawing. Continuation of abandoned application Ser. myristrate, triethanolamine cocoate, potassium isostearate, No. 816,395, Apr. 15, 1969. This application Aug. 23, potassium myristate and the like. The soap functions as 1971, Ser. No. 174,192 an opacifier and thickener and contributes some condi The portion of the term of the patent subsequent to tioning properties to the instant composition. Since fatty Jan. 16, 1990 has been disclaimed 10 acids are a natural ingredient of the skin, the usefulness Int, Cl, A61k 7/08, C11d 1/84 of soap for cosmetic purposes as an ingredient of a sham U.S. C. 424-70 7 Claims poo is desirable. The water-soluble tertiary amine oxide which con ABSTRACT OF THE DISCLOSURE stitutes the major ingredient of this composition may be This disclosure relates to a stable, creamy-foam sham 15 represented by the general formula: RR2R3N->O where poo comprising a tertiary amine oxide, a higher alkyl in R1 is a higher alkyl radical having from 10 to 18 betaine or sulphobetaine and a soap in the ratio of carbon atoms, such as lauryl, decyl, cetyl, oleyl, stearyl, 2:1:1, respectively.
    [Show full text]
  • Department of Homeland Security (Dhs) Appendix a Chemicals of Interest (Coi)
    DEPARTMENT OF HOMELAND SECURITY (DHS) APPENDIX A CHEMICALS OF INTEREST (COI) Acetaldehyde Bromine trifluoride Acetone Cyanohydrin, stabilized Bromothrifluorethylene Acetyl bromide 1,3-Butadiene Acetyl chloride Butane Acetyl iodide Butene Acetylene 1-Butene Acrolein 2-Butene Acrylonitrile 2-Butene-cis Acrylyl chloride 2-Butene-trans Allyl alcohol Butyltrichlorosilane Allylamine Calcium hydrosulfite Allyltrichlorosilane, stabilized Calcium phosphide Aluminum (powder) Carbon disulfide Aluminum Bromide, anhydrous Carbon oxysulfide Aluminum Chloride, anhydrous Carbonyl fluoride Aluminum phosphide Carbonyl sulfide Ammonia (anhydrous) Chlorine Ammonia (conc 20% or greater) Chlorine dioxide Ammonium nitrate, note #1 Chlorine monoxide Ammonium nitrate, note #2 Chlorine pentafluoride Ammonium perchlorate Chlorine trifluoride Ammonium picrate Chloroacetyl chloride Amyltrichlorosilane 2-Chloroethylchloro-methylsulfide Antimony pentafluoride Chloroform Arsenic trichloride Chloromethyl ether Arsine Chloromethyl methyl ether Barium azide 1-Chloropropylene 1,4-Bis(2-chloroethylthio)-n-butane 2-Chloropropylene Bis(2-chloroethylthio) methane Chlorosarin Bis(2-chloroethylthiomethyl)ether Chlorosoman 1,5-Bis(2-chloroethylthio)-n-pentane Chlorosulfonic acid 1,3-Bis(2-chloroethylthio)-n-propane Chromium oxychloride Boron tribromide Crotonaldehyde Boron trichloride Crotonaldehyde, (E)- Boron trifluoride Cyanogen Boron trifluoride compound with methyl Cyanogen chloride ether (1:1) Cyclohexylamine Bromine Cyclohexyltrichlorosilane Bromine chloride Cyclopropane
    [Show full text]
  • Determination of Dimethylamine and Triethylamine in Hydrochloride
    Short Communications Determination of Dimethylamine and Triethylamine in Hydrochloride Salts of Drug Substances by Headspace Gas Chromatography using Dimethyl Sulphoxide- imidazole as Diluent J. GOPALAKRISHNAN* AND S. ASHA DEVI1 Piramal Enterprises Limited, Analytical Development Laboratory, 1, Nirlon complex, Off Western expressway, Goregaon (E), Mumbai-400 101, 1School of Biosciences and Technology, VIT University, Vellore-632 014, India Gopalakrishnan and Asha Devi: Determination of Amines in Drug by Headspace Gas Chromatography A simple, rapid, accurate and precise analytical method for determination of secondary and tertiary amines in hydrochloride salt form of drug substances in non-aqueous medium, which does not require any derivatization, was developed by headspace gas chromatography. Dimethylamine hydrochloride and triethylamine hydrochloride were analyzed in metformin hydrochloride. The sample was dissolved in a vial containing dimethyl sulphoxide and imidazole. The vials were incubated at 100°, for 20 min. The syringe temperature was maintained at 110°. DB624 column with 30 m×0.32 mm i.d., 1.8 µm film thickness was used. The injector and detector temperature were 200° and 250°, respectively. The analytical program used was carrier gas (nitrogen) flow rate: 1 ml/min; injected gas volume: 1.0 ml; split ratio: 1:10; oven temperature program: 40° for 10 min, followed by an increase up to 240° at 40°/min. The analytical method was validated with respect to precision, recovery, limit of detection and quantification and linearity. Key words: Aliphatic amines, dimethylamine, triethylamine, metformin hydrochloride, DMSO, imidazole, headspace gas chromatography Organic solvents are used in the synthesis of limit for unspecified impurities is 0.10%, i.e., 1000 pharmaceutical compounds and they must be controlled ppm[4].
    [Show full text]
  • Reaction of CS2 and CO2 with Amidines and Guanidines
    Reaction of CS2 and CO2 with Amidines and Guanidines By Aliyah Khamis Alshamrani A thesis submitted to the Department of Chemistry In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada July 2018 Copyright ©Aliyah Khamis Alshamrani, 2018 Abstract Reaction of CS2 and CO2 with Amidines and Guanidines Neutral organic bases such as amidines and guanidines are very useful in studies of the reactivity of heterocumulenes such as carbon disulfide (CS2) and carbon dioxide (CO2) to build C-C or C-N bonds. Reaction of amidines with CS2 in the absence of water and without adding desulfurization reagents or solvents is less documented. In this research I have investigated different types of sulfur and nitrogen containing products obtained upon reaction of carbon disulfide with cyclic and acyclic amidines. The reactivity behaviour and the resulting products depend on the structure of the starting amidines. Our observations for the contrasting reactivity were supported by calculations of the free energy of the reaction. 1,4,5,6-Tetrahydropyrimidine derivatives, as examples of cyclic amidines, follow different reactivity compared to acyclic amidines. They also follow different patterns of reaction with CS2 depending on their structures. Possessing an N-H bond allows the cyclic amidine to form a + - dithiocarbamate salt {[BH ] [(B-CS 2)-(H)]}, where B is the starting amidine, analogous to those formed by secondary amines [R2NH2][R2NCO2] and [R2NH2][R2NCS2] with CO2 or CS2, respectively. If the molecule does not possess an N-H bond then observed reactivity depends on whether there is a methylene alpha to the amidine carbon.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • The Chlorination of Certain Purinones with Phosphorus Oxychloride in the Presence of Tertiary Amines
    THE CHLORINATION OF CERTAIN PURINONES WI'fH PHOSPHORUS OXYCHLORIDE IN THE PRESENCE OF TERTIARY AMINES by ROLAND KENITH ROBINS \ ·' A THESIS subnltted to OREGON STATE, COLLEGE 1n partial fulfillment of the requirements tor the degree or DOCTOR OF PHILOSOPHY June 1952 lPlROYlEr Redacted for Privacy lrcfsor ff fmfrtrf In fir;r cf Ltr Redacted for Privacy Redacted for Privacy Uril5! of ofuArlr orltil.t Redacted for Privacy lha f 0mftrtr ililErof ftr ltbrrt, lr nrrrrrrlril ItDr0 try feltrrat fr Bct0nr AOKNO LEOOEMENT The author wishes to express his deepest gratitude to his wife, Lesaa, for her personal sacrifice and efforts ·which have contri buted greatly to the sucoeas of this work. The author wishes also to express thanks to Dr. Bert E. Christensen for h1s valuable assistance throughout the course of this research. TABLE OF CONTENTS Page Discussion • • • • • • • • • • • • • • • • • • • 1 Experimental • • • • • • • • • • • • • • • • • .. 13 Summary • • • • • • ., • • • • • • • • • • ,. • ., 28 Bibliography • • • • • • • • • • • • • • • • • • 29 LIST OF FIGURES Figure 1 • • • • • • • • • • • • • • • • • • • • 5 • Figure 2 • • • • • • ,. • • • • • • • •••••• 9 THE CHLORINATION OF CERTAIN PURINONES WITH PHOSPHORUS OXYCHLORIDE IN THE PRESENCE OF TERTIARY AMINES Since Baddiley and Topham (2, p.678) first re• ported using dimethylaniline in the chlorination or barbituric acid with phosphorus oxychloride, the use or a mixture or this tertiary amine and phosphorus oxy­ chloride has found extensive application in the prep­ aration ot numerous chloropyrimidinea . Because of the close chemical relationship of pyrimidine and purine derivatives, it aeemed quite logical that thia ·reaction could well be extended to the preparation of the rather inaooeaaible chloropur1nes. These chloropurinea could then serve as valuable inter­ mediates in the preparation or synthetic nucleoaidea I (7, pp.833-838).
    [Show full text]
  • View Is Primarily on Addressing the Issues of Non-Permanently Charged Reactivators and the Development of Treatments for Aged Ache
    Design, Synthesis, and Evaluation of Therapeutics for the Treatment of Organophosphorus Poisoning by Nerve Agents and Pesticides Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Andrew Joseph Franjesevic Graduate Program in Chemistry The Ohio State University 2019 Dissertation Committee Professor Christopher M. Hadad, Advisor Professor Thomas J. Magliery Professor David Nagib Professor Jonathan R. Parquette Copyrighted by Andrew Joseph Franjesevic 2019 2 Abstract Organophosphorus (OP) compounds, both pesticides and nerve agents, are some of the most lethal compounds known to man. Although highly regulated for both military and agricultural use in Western societies, these compounds have been implicated in hundreds of thousands of deaths annually, whether by accidental or intentional exposure through agricultural or terrorist uses. OP compounds inhibit the function of the enzyme acetylcholinesterase (AChE), and AChE is responsible for the hydrolysis of the neurotransmitter acetylcholine (ACh), and it is extremely well evolved for the task. Inhibition of AChE rapidly leads to accumulation of ACh in the synaptic junctions, resulting in a cholinergic crisis which, without intervention, leads to death. Approximately 70-80 years of research in the development, treatment, and understanding of OP compounds has resulted in only a handful of effective (and approved) therapeutics for the treatment of OP exposure. The search for more effective therapeutics is limited by at least three major problems: (1) there are no broad scope reactivators of OP-inhibited AChE; (2) current therapeutics are permanently positively charged and cannot cross the blood-brain barrier efficiently; and (3) current therapeutics are ineffective at treating the aged, or dealkylated, form of AChE that forms following inhibition of of AChE by various OPs.
    [Show full text]
  • Export Controlled Chemicals, Including Mixtures and Compounds
    Export Controlled Chemicals, including mixtures and compounds **ALL High Explosives and their Precursors Are Export Controlled** Note that mixtures in which at least one of the chemicals listed below constitutes 30 percent or more of the weight of the mixture are also controlled. - 1,1-Diethylhydrazine nitrate (DEHN)/ 1,2-Diethylhydrazine nitrate (DEHN) (CAS 363453- 17-2) - 1,1-Dimethylhydrazinium azide (CAS 227955-52-4)/ - 1,2-Dimethylhydrazinium azide (CAS 299177-50-7) - 2 Nitrodiphenylamine (2-NDPA) - 2-Chloroethanol (CAS 107-07-3) - 2-hydroxyethylhydrazine nitrate (HEHN) - 3-Hydroxyl-1-methylpiperidine (CAS 3554-74-3) - 3-Quinuclidinol (CAS 1619-34-7) - 3-Quinuclidone (CAS 3731-38-2) - 3,6-dihydrazino tetrazine nitrate (DHTN), also referred to as 1,4-dihydrazine nitrate. - Allylhydrazine (CAS 7422-78-8) - Ammonium hydrogen fluoride (CAS 1341-49-7) - Ammonium nitrate (including fertilizers) containing more than 15% by weight ammonium nitrate - Arsenic trichloride (CAS 7784-34-1) - Benzilic acid (CAS 76-93-7) - Carboxy-terminated polybutadiene (including carboxyl-terminated polybutadiene) (CTPB) - Chemicals containing a phosphorus atom to which is bonded one methyl, ethyl, or propyl (normal or iso) group but not further carbon atoms. - Chlorine trifluoride (ClF3) - Chloropicrin: Trichloronitromethane (CAS 76-06-2) - Cyanogen chloride (CAS 506-77-4) - Di-isopropylamine (CAS 108-18-9) - Diethyl chlorophosphite (CAS 589–57–1) - Diethyl ethylphosphonate (CAS 78-38-6) - Diethyl methylphosphonate (CAS 683-08-9) - Diethyl methylphosphonite
    [Show full text]
  • Chemical Compatibility Storage Group
    CHEMICAL SEGREGATION Chemicals are to be segregated into 11 different categories depending on the compatibility of that chemical with other chemicals The Storage Groups are as follows: Group A – Compatible Organic Acids Group B – Compatible Pyrophoric & Water Reactive Materials Group C – Compatible Inorganic Bases Group D – Compatible Organic Acids Group E – Compatible Oxidizers including Peroxides Group F– Compatible Inorganic Acids not including Oxidizers or Combustible Group G – Not Intrinsically Reactive or Flammable or Combustible Group J* – Poison Compressed Gases Group K* – Compatible Explosive or other highly Unstable Material Group L – Non-Reactive Flammable and Combustible, including solvents Group X* – Incompatible with ALL other storage groups The following is a list of chemicals and their compatibility storage codes. This is not a complete list of chemicals, but is provided to give examples of each storage group: Storage Group A 94‐75‐7 2,4‐D (2,4‐Dichlorophenoxyacetic acid) 94‐82‐6 2,4‐DB 609-99-4 3,5-Dinitrosalicylic acid 64‐19‐7 Acetic acid (Flammable liquid @ 102°F avoid alcohols, Amines, ox agents see SDS) 631-61-8 Acetic acid, Ammonium salt (Ammonium acetate) 108-24-7 Acetic anhydride (Flammable liquid @102°F avoid alcohols see SDS) 79‐10‐7 Acrylic acid Peroxide Former 65‐85‐0 Benzoic acid 98‐07‐7 Benzotrichloride 98‐88‐4 Benzoyl chloride 107-92-6 Butyric Acid 115‐28‐6 Chlorendic acid 79‐11‐8 Chloroacetic acid 627‐11‐2 Chloroethyl chloroformate 77‐92‐9 Citric acid 5949-29-1 Citric acid monohydrate 57-00-1 Creatine 20624-25-3
    [Show full text]