View Is Primarily on Addressing the Issues of Non-Permanently Charged Reactivators and the Development of Treatments for Aged Ache

Total Page:16

File Type:pdf, Size:1020Kb

View Is Primarily on Addressing the Issues of Non-Permanently Charged Reactivators and the Development of Treatments for Aged Ache Design, Synthesis, and Evaluation of Therapeutics for the Treatment of Organophosphorus Poisoning by Nerve Agents and Pesticides Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Andrew Joseph Franjesevic Graduate Program in Chemistry The Ohio State University 2019 Dissertation Committee Professor Christopher M. Hadad, Advisor Professor Thomas J. Magliery Professor David Nagib Professor Jonathan R. Parquette Copyrighted by Andrew Joseph Franjesevic 2019 2 Abstract Organophosphorus (OP) compounds, both pesticides and nerve agents, are some of the most lethal compounds known to man. Although highly regulated for both military and agricultural use in Western societies, these compounds have been implicated in hundreds of thousands of deaths annually, whether by accidental or intentional exposure through agricultural or terrorist uses. OP compounds inhibit the function of the enzyme acetylcholinesterase (AChE), and AChE is responsible for the hydrolysis of the neurotransmitter acetylcholine (ACh), and it is extremely well evolved for the task. Inhibition of AChE rapidly leads to accumulation of ACh in the synaptic junctions, resulting in a cholinergic crisis which, without intervention, leads to death. Approximately 70-80 years of research in the development, treatment, and understanding of OP compounds has resulted in only a handful of effective (and approved) therapeutics for the treatment of OP exposure. The search for more effective therapeutics is limited by at least three major problems: (1) there are no broad scope reactivators of OP-inhibited AChE; (2) current therapeutics are permanently positively charged and cannot cross the blood-brain barrier efficiently; and (3) current therapeutics are ineffective at treating the aged, or dealkylated, form of AChE that forms following inhibition of of AChE by various OPs. iii Herein we report initial computational investigations, the synthesis, and then the biological evaluation of a new class of therapeutic quinone methide precursors (QMPs) for the purpose of treating OP exposure. We have thus far been able to demonstrate that our compounds bind with AChE, reactivate OP-inhibited AChE, and resurrect (restore) native function of the aged-AChE. These compounds are non-oxime structures and address at least two of the three major problems with current therapeutics. The testing of a structure-activity library of 40 substituted QMPs for the resurrection of methylphosphonate-aged AChE yielded great success. In total, 20 of the 40 compounds showed resurrection of the methylphosphonate-aged AChE, with the best compound achieving ~14.5% recovery in 24 hours at a pH of 7.5. Further testing of the top seven compounds revealed that there is a significant dependence of resurrection on the medium’s pH and the ratio of [QMP]:[AChE] in solution. Interestingly, at varying concentrations of [QMP]:[AChE], one compound is shown to be the most effective, recovering 54.9% and 62.6% of the original native activity at pH 7.5 after 24 hours when the [QMP]:[AChE] ratio is increased by 5 and 10 fold, respectively. Members of this structure-activity relationship library were even more effective with organophosphate pesticides, and many of these compounds recovered >50% in 24 hours. With methyl paraoxon as the pesticide, our QMPs could recover >20% in 1 hr, and with an effective concentration (EC50) of about 100 µM. The vast improvement in therapeutic efficiency over the course of this research demonstrates the potential of these compounds for the treatment of OP exposure and warrants significant continued investigation. iv Acknowledgments Absolutely none of this would have been possible without the continued support of my family and friends. There were points in times when I no longer wished to continue pursuit of my doctorate degree but the continued support of my immediate family and Professor Christopher Hadad gave me the motivation and strength to continue forward. At times this program left me distraught but the love and support of my mother, father, and brother never waivered. I would like to personally thank Chris for his continued guidance both in my chemistry endeavors as well as personal experiences during the course of this program. His belief in my abilities as both a chemist and mentor drove me to continue my career in organic chemistry and the sciences. I also wish to thank Dr. Christopher Callam for his mentorship in regards to both chemistry as well as graduate school and career pursuits. To Dr. Qinggeng (Albert) Zhuang and Dr. William (Bill) Coldren, thanks for making lab interactive. I have greatly enjoyed our various conversations whether chemistry related or not. To Dr. Thomas (Tom) Corrigan for his assistance in helping me develop my synthetic skills in the time we managed to work with one another. And to all the current and future group members, I share such a passion for the research conducted in the Hadad lab. Each year the group has grown closer and has proven to be more fun. I wish the best in your future research and I’m excited for the progress to come. v Vita 2014 ………………………………………………...B.S. Chemistry, Wittenberg University 2014 to present ……………………………………..Graduate Research Associate, Department of Chemistry and Biochemistry, The Ohio State University Publications Franjesevic, A. J.; Sillart, S. B.; Beck, J. B.; Vyas, S.; Callam, C. S.; Hadad, C. M. Resurrection and Reactivation of Acetylcholinesterase and Butyrylcholinesterase. Chem. Eur. J. 2019, 25, 5337-5371. Zhuang, Q.; Franjesevic, A. J.; Corrigan, T. S.; Coldren, W. H.; Dicken, R.; Sillart, S.; DeYong, A.; Yoshino, N.; Smith, J.; Fabry, S.; Fitzpatrick, K.; Blanton, T. G.; Joseph, J.; Yoder, R. J.; McElroy, C. A.; Dogan Ekici, O.; Callam, C. S.; Hadad, C. M. Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. J. Med. Chem. 2018, 61, (16), 7034–7042. vi Yoder, R. J.; Zhuang, Q.; Beck, J. M.; Franjesevic, A.; Blanton, T. G.; Sillart, S.; Secor, T.; Guerra, L.; Brown, J. D.; Reid, C.; McElroy, C. A.; Dogan Ekici, O.; Callam, C. S.; Hadad, C. M. Study of para-Quinone Methide Precursors toward the Realkylation of Aged Acetylcholinesterase. ACS Med. Chem. Lett. 2017, 8, (6), 622–627. Fields of Study Major Field: Chemistry vii Table of Contents Abstract .............................................................................................................................. iii Acknowledgments ............................................................................................................... v Vita ..................................................................................................................................... vi List of Tables ..................................................................................................................... xi List of Figures ................................................................................................................... xii Chapter 1. INTRODUCTION TO ORGANOPHOSPHORUS COMPOUNDS AND THEIR INHIBITION AND AGING OF ACETYLCHOLINESTERASE ........................ 1 1.1 Historical Development of Organophosphorus Pesticides and Nerve Agents .......... 1 1.2 Recent Uses of Organophophorus Pesticides and Nerve Agents for Terrorism. ...... 7 1.3 Acetylcholinesterase Structure and Function in the Native, Inhibited, and Aged States. .............................................................................................................................. 9 1.4 Butyrylcholinesterase Structure and Function in the Native, Inhibited, and Aged States. ............................................................................................................................ 19 1.5 Reactivation of Acetylcholinesterase. ..................................................................... 24 1.6 Recent Results from Efforts to Develop Broad Scope Reactivators of Acetylcholinesterase. .................................................................................................... 25 1.7 Developing Non-Permanently Charged Oxime Reactivators of OP-Inhibited Acetylcholinesterase. .................................................................................................... 43 1.8 Developing Non-Oxime Based Reactivators of Inhibited Acetylcholinesterase. ... 54 1.9 Difficulties with the Evaluation of Developed Reactivators. ................................. 62 1.10 Reactivation of Butyrylcholinesterase. ................................................................. 64 1.11 Recent Results for the Reactivation of Butyrylcholinesterase. ............................. 66 1.12 Resurrection of Aged Acetylcholinesterase. ......................................................... 77 1.13 Early Attempts at the Realkylation of Aged Acetylcholinesterase. ...................... 78 1.14. Quinone Methides as Alkylating Agents of Model Nucleophiles. ...................... 89 1.15 Mannich Bases for the Alkylation of Aged Acetylcholinesterase. ....................... 95 1.16 Problems with Realkylation of Aged AChE. ...................................................... 101 1.17 Perspective and Future Work. ............................................................................. 103 viii Chapter 2. COMPUTATIONAL INSIGHTS INTO THE ALKYLATION REACTIONS OF PYRIDINE AND PYRIDINIUM QUINONE METHIDE PRECURSORS: AN EFFORT TO REVERSE THE EFFECTS OF ACETYLCHOLINESTERASE FOLLOWING AGING ..................................................................................................
Recommended publications
  • ASM 2013 Countermotions.Pdf
    Christiane Schnura, Schweidnitzer Str. 41, 40231 Düsseldorf Christiane Schnura, Schweidnitzer Str. 41, 40231 Düsseldorf Bayer Aktiengesellschaft Gebäude Q 26 (Rechtsabteilung) Kaiser-Wilhelm-Allee 51368 Leverkusen Annual Stockholders’ Meeting on April 26, 2013 I hereby notify you that I will oppose the proposals of the Board of Management and the Supervisory Board as regards Items 2 and 3 of the Agenda, and will induce the other stockholders to vote in favor of the following countermotions. Countermotion to Item 2: The actions of the members of the Board of Management are not ratified The BAYER Group is responsible for many environmental and social problems. The Board of Management bears responsibility for this, and for this reason its actions should not be ratified. The following is a selection of current problem areas. Labeling of genetically engineered products BAYER contributed USD 2 million to a campaign operated by chemical corporations in the United States which resulted in an initiative to have genetically engineered food products labeled accordingly being defeated. Proposition 37, an initiative put forward in the federal state of California which called for mandatory European-style labeling, went to the ballot on Presidential Election Day, November 6. The companies invested more than USD 40 million in their advertising campaign, roughly ten times more than the proponents of the initiative. This is a classic example of double standards. In Europe it goes without saying that genetically modified ingredients are declared on the labeling of a food product. In the United States, on the other hand, spurious arguments are put forward to prevent labeling of this kind.
    [Show full text]
  • Monocrotophos Proposed AEGL Document
    MONOCROTOPHOS Page 1 of 32 Proposed 10/2009 v.1 1 2 3 4 ACUTE EXPOSURE GUIDELINE LEVELS 5 (AEGLs) 6 7 8 PROPOSED 9 10 11 12 13 MONOCROTOPHOS 14 (CAS Reg. No. 6923-22-4) 15 16 17 18 19 20 MONOCROTOPHOS Page 2 of 32 Proposed 10/2009 v.1 1 2 PREFACE 3 4 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 5 1972, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous 6 Substances (NAC/AEGL Committee) has been established to identify, review and interpret 7 relevant toxicologic and other scientific data and develop AEGLs for high priority, acutely toxic 8 chemicals. 9 10 AEGLs represent threshold exposure limits for the general public and are applicable to 11 emergency exposure periods ranging from 10 minutes to 8 hours. Three levels C AEGL-1, 12 AEGL-2 and AEGL-3 C are developed for each of five exposure periods (10 and 30 minutes, 1 13 hour, 4 hours, and 8 hours) and are distinguished by varying degree of severity of toxic effects. 14 The three AEGLs are defined as follows: 15 16 AEGL-1 is the airborne concentration (expressed as parts per million or milligrams per 17 cubic meter [ppm or mg/m3]) of a substance above which it is predicted that the general 18 population, including susceptible individuals, could experience notable discomfort, irritation, or 19 certain asymptomatic, non-sensory effects. However, the effects are not disabling and are 20 transient and reversible upon cessation of exposure.
    [Show full text]
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • Downloads/Pgm Hydrus1d/HYDRUS-4.16.Pdf (Accessed on 20 April 2019)
    water Article Assessment of the Environmental Risk of Pesticides Leaching at the Watershed Scale under Arid Climatic Conditions and Low Recharge Rates Hesham M. Ibrahim 1,2,* and Ali M. Al-Turki 1 1 Department of Soil Science, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; [email protected] 2 Department of Soils and Water, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt * Correspondence: [email protected]; Tel.: +966-501728656 Received: 5 January 2020; Accepted: 2 February 2020; Published: 5 February 2020 Abstract: The assessment of the vulnerability of soil and groundwater resources to pesticide contamination is important to reduce the risk of environmental pollution. The applicability of the expanded attenuation factor (EAF) to assess leaching potential of 30 pesticides was investigated under 1 four recharge rates (0.0003–0.002 m d− ) in the arid environment of the Jazan watershed. EAF results revealed that Picloram, Carbofuran, Monocrotophos, and 2,4-D pesticides showed high leaching potential, mainly because of their low KOC, and relatively longer t1/2. In addition, medium leaching potential was observed with six more pesticides (Atrazine, Aldicarb, Simazine, Methomyl, Oxamyl, and Lindane). Regardless of the recharge rate, all other pesticides showed a very low leaching potential in the Jazan watershed. Sensitivity analysis revealed that the output of the EAF index is most sensitive to the fraction of organic carbon ( foc), water content at field capacity (θFC ), recharge rate (q), and partition coefficient (KOC), and least sensitive to soil bulk density (ρb) and air-filled porosity (na).
    [Show full text]
  • Validation Report 20
    EURL for Cereals and Feeding stuff National Food Institute Technical University of Denmark Validation Report 20 Determination of pesticide residues in rice baby food by GC-MS/MS and LC-MS/MS (QuEChERS method) Parvaneh Hajeb Susan Strange Herrmann Mette Erecius Poulsen December 2015 Page 2 of 18 CONTENT: 1. Introduction ...................................................................................................................................... 3 2. Principle of analysis......................................................................................................................... 3 3. Validation design ............................................................................................................................. 4 4. Chromatograms and calibration curves .......................................................................................... 5 5. Validation parameters...................................................................................................................... 9 6. Criteria for the acceptance of validation results ........................................................................... 10 7. Results and discussion ................................................................................................................... 10 8. Conclusions .................................................................................................................................... 12 9. References .....................................................................................................................................
    [Show full text]
  • Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects
    EN58CH06-Casida ARI 5 December 2012 8:11 Neuroactive Insecticides: Targets, Selectivity, Resistance, and Secondary Effects John E. Casida1,∗ and Kathleen A. Durkin2 1Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, 2Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley, California 94720; email: [email protected], [email protected] Annu. Rev. Entomol. 2013. 58:99–117 Keywords The Annual Review of Entomology is online at acetylcholinesterase, calcium channels, GABAA receptor, nicotinic ento.annualreviews.org receptor, secondary targets, sodium channel This article’s doi: 10.1146/annurev-ento-120811-153645 Abstract Copyright c 2013 by Annual Reviews. Neuroactive insecticides are the principal means of protecting crops, people, All rights reserved livestock, and pets from pest insect attack and disease transmission. Cur- ∗ Corresponding author rently, the four major nerve targets are acetylcholinesterase for organophos- phates and methylcarbamates, the nicotinic acetylcholine receptor for neonicotinoids, the γ-aminobutyric acid receptor/chloride channel for by Public Health Information Access Project on 04/29/14. For personal use only. Annu. Rev. Entomol. 2013.58:99-117. Downloaded from www.annualreviews.org polychlorocyclohexanes and fiproles, and the voltage-gated sodium channel for pyrethroids and dichlorodiphenyltrichloroethane. Species selectivity and acquired resistance are attributable in part to structural differences in binding subsites, receptor subunit interfaces, or transmembrane regions. Additional targets are sites in the sodium channel (indoxacarb and metaflumizone), the glutamate-gated chloride channel (avermectins), the octopamine receptor (amitraz metabolite), and the calcium-activated calcium channel (diamides). Secondary toxic effects in mammals from off-target serine hydrolase inhibi- tion include organophosphate-induced delayed neuropathy and disruption of the cannabinoid system.
    [Show full text]
  • Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector REVIEW published: 18 January 2017 doi: 10.3389/fnins.2016.00590 Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds Jaymie R. Voorhees 1, 2*, Diane S. Rohlman 2, 3, Pamela J. Lein 4 and Andrew A. Pieper 1, 2, 5, 6, 7, 8, 9* 1 Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA, 2 Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA, USA, 3 Department of Occupational and Environmental Health, University of Iowa College of Public Health, Iowa City, IA, USA, 4 Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA, 5 Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA, 6 Department of Free Radical and Radiation Biology Program, University of Iowa Carver College of Medicine, Iowa City, IA, USA, 7 Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA, 8 Department of Veteran Affairs, University of Iowa Carver College of Medicine, Iowa City, IA, USA, 9 Weill Cornell Autism Research Program, Weill Cornell Medical College, New York, NY, USA Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high Edited by: OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests Stefano L.
    [Show full text]
  • Oxydemeton-Methyl (166) Demeton-S-Methyl (073
    oxydemeton-methyl 993 OXYDEMETON-METHYL (166) DEMETON-S-METHYL (073) EXPLANATION Oxydemeton-methyl (ODM) was evaluated for residues by the JMPR in 1968, 1973, 1979, 1984, 1989, and 1992. The 1992 review was a complete re-evaluation. It reviewed extensive residue data from supervised trials on all major crops and associated data on use patterns, storage stability, processing, and methods of residue analysis were reviewed and numerous MRLs were recommended. The MRLs are expressed as the sum oxydemeton-methyl, demeton-S-methyl, and demeton-S- methylsulphon, expressed as oxydemeton-methyl. The ADI was established in 1989 at 0.0003 mg/kg body weight and is for the sum of the three compounds. Demeton-S-methyl is an insecticide. The sulfoxide of demeton-S-methyl is ODM. It currently has no MRLs. The 1995 CCPR scheduled ODM and demeton-S-methyl for periodic review of residue aspects by the 1997 JMPR (ALINORM 95/24A). This was changed by the 1997 CCPR, which scheduled ODM and demeton-S-methyl for periodic review by the 1998 JMPR. Bayer AG has submitted data in support of the Periodic Review which included information on crops and regions of interest to that company. The governments of Germany and The Netherlands have also submitted information. IDENTITY Common name (ISO): Oxydemeton-methyl Chemical name: IUPAC: S-2-ethylsulfinylethyl O,O-dimethyl phosphothioate CA: S-[2-ethylsulfinyl)ethyl] O,O-dimethyl phosphothioate CAS number: 301-12-2 EU-index number: 015-046-00-7 EINECS number: 206-110-7 CIPAC number: 171 Molecular formula: C6 H15 O4 P S2 Synonyms: Metasystox R Structural formula: .
    [Show full text]
  • Appendix H EPA Hazardous Waste Law
    Appendix H EPA Hazardous Waste Law This Appendix is intended to give you background information on hazardous waste laws and how they apply to you. For most U.S. Environmental Protection Agency (EPA) requirements that apply to the University, the Safety Department maintains compliance through internal inspections, record keeping and proper disposal. In Wisconsin, the Department of Natural Resources (DNR) has adopted the EPA regulations, consequently EPA and DNR regulations are nearly identical. EPA defines This Appendix only deals with "hazardous waste" as defined by the EPA. hazardous waste as Legally, EPA defines hazardous waste as certain hazardous chemical waste. This hazardous chemical Appendix does not address other types of regulated laboratory wastes, such as waste; radioactive, infectious, biological, radioactive or sharps. Chapter 8 descibes disposal procedures infectious and biohazardous waste for animals. Chapter 9 describes disposal procedures for sharps and other waste that are regulated by can puncture tissue. Chapter 11 discusses Radiation and the Radiation Safety for other agencies. Radiation Workers provides guidelines for the disposal of radioactive waste. Procedures for medical waste are written by the UW Hospital Safety Officer. The Office of Biological Safety can provide guidance for the disposal of infectious and biological waste. EPA regulations focus on industrial waste streams. As a result, many laboratory chemical wastes are not regulated by EPA as hazardous chemical waste. However, many unregulated chemical wastes do merit special handling and disposal If a waste can be procedures. Thus, Chapter 7 and Appendix A of this Guide recommend disposal defined as: procedures for many unregulated wastes as if they were EPA hazardous waste.
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water with Direct Aqueous Injection LC/MS/MS
    EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water with Direct Aqueous Injection LC/MS/MS E. Michael Thurman and Imma Ferrer Center for Environmental Mass Spectrometry University of Colorado Boulder, CO, USA Confidentiality Label 1 March 20, 2012 Abstract EPA Method 538 is a new method from EPA for organophosphate pesticides in drinking water. It uses direct aqueous injection; thus, no sample preparation is needed. We use both UHPLC (Agilent 1290) and MS/MS (Agilent 6460) analysis for rapid analysis and sensitive detection with ng/L limits of detection. A second MRM is added for more reliable identification. Confidentiality Label 2 March 20, 2012 Hypothesis Direct injection of organophosphate pesticides (EPA Method 538) will work by UHPLC (Agilent Model 1290) and LC/MS/MS with Jetstream (Agilent Model 6460) with trace level detection at ng/L concentrations. Confidentiality Label 3 March 20, 2012 1. Introduction-Summary 1.1 EPA Method 538 (published in November 2009 by Shoemaker) deals with Organophosphate pesticides in drinking water (1) and one other contaminant, quinoline. 1.2 The method consists of 10 compounds: acephate, aldicarb, aldicarb sulfoxide, dicrotophos, diisopropylmethylphosphonate (DIMP), fenamiphos sulfone, fenamiphos sulfoxide, methamidophos, oxydemeton methyl, quinoline, and thiofanox with 5 labeled internal standards. 1.3 Direct aqueous injection is used with a large volume sample of 100 microliters; thus, no sample preparation is needed. 1.4 Because solid phase extraction (i.e. concentration of the sample is not carried out) suppression is mimimized in the analysis. 1.5 Part-per-Trillion Detection Limits. Confidentiality Label 4 March 20, 2012 Introduction 1.1: EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water by Direct Aqueous Injection by Jody Shoemaker, EPA Cincinnati, OH [email protected] 513-569-7298 Confidentiality Label 5 March 20, 2012 Introduction: 1.2.
    [Show full text]
  • EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water by Aqueous Direct Injection and LC/MS/MS Summar
    EPA Method 538: Determination of Selected Organic Contaminants in Drinking Water by Aqueous Direct Injection and LC/MS/MS UCT Part Numbers: SLAQ100ID21-3UM - Selectra® Aqueous C18, 100 x 2.1mm, 3µm SLAQGDC20-3UM - Selectra® Aqueous C18, Guard column, 10 x 2.0mm, 3µm SLGRDHLDR - Guard Cartridge Holder June 2015 Summary: This application outlines a direct aqueous injection-liquid chromatography/tandem mass spectrometry (DAI-LC/MS/MS) method for the determination of 11 selected organic contaminants in drinking water, including methamidophos, acephate, aldicarb sulfoxide, oxydemeton methyl, dicrotophos, aldicarb, diisopropyl methylphosphonate (DIMP), fenamiphos sulfone, fenamiphos sulfoxide, thiofanox, and quinoline [1]. Dicrotophos, oxydemeton methyl, methamidophos, and acephate are UCMR4 compounds. An Aqueous C18 HPLC column was utilized for analyte retention and separation. Calibration curves were constructed using calibration standards prepared in reagent water with preservative reagents for analyte quantitation. The responses were linear over the entire analytical ranges (R2 ≥ 0.9970). Excellent accuracy (90 - 111%) and precision (RSD% < 20%, n=7) were achieved for fortified reagent water and tap water samples. Procedure: 1. Preserve drinking water sample with 64 mg/L of sodium omadine (antimicrobial) and 1.5 g/L of ammonium acetate (binding free chlorine). 2. Mix 0.99 mL of the preserved water sample with 10 μL of 0.4-12.5 ng/μL internal standard mixture, and vortex for 30 sec. 3. Inject 50 μL onto LC/MS/MS equipped with an aqueous
    [Show full text]