Unexpectedly Acidic Nanoparticles Formed in Dimethylamine–Ammonia–Sulfuric-Acid Nucleation Experiments at CLOUD

Total Page:16

File Type:pdf, Size:1020Kb

Unexpectedly Acidic Nanoparticles Formed in Dimethylamine–Ammonia–Sulfuric-Acid Nucleation Experiments at CLOUD Atmos. Chem. Phys., 16, 13601–13618, 2016 www.atmos-chem-phys.net/16/13601/2016/ doi:10.5194/acp-16-13601-2016 © Author(s) 2016. CC Attribution 3.0 License. Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD Michael J. Lawler1,a,b, Paul M. Winkler2, Jaeseok Kim3,4, Lars Ahlm5, Jasmin Tröstl6, Arnaud P. Praplan7,8, Siegfried Schobesberger7,9, Andreas Kürten10, Jasper Kirkby10,11, Federico Bianchi7, Jonathan Duplissy7, Armin Hansel12, Tuija Jokinen7, Helmi Keskinen3,7, Katrianne Lehtipalo7,6, Markus Leiminger12, Tuukka Petäjä7, Matti Rissanen7, Linda Rondo10, Mario Simon10, Mikko Sipilä7, Christina Williamson10,13,14, Daniela Wimmer7,10, Ilona Riipinen5, Annele Virtanen2, and James N. Smith1,b 1Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA 2Faculty of Physics, University of Vienna, 1090 Vienna, Austria 3Department of Applied Physics, University of Eastern Finland, Kuopio, Finland 4Arctic Research Center, Korea Polar Research Institute, Yeonsu-gu, Incheon 21990, Republic of Korea 5Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden 6Paul Scherrer Institute, Villigen, Switzerland 7Department of Physics, University of Helsinki, 00014 Helsinki, Finland 8Finnish Meteorological Institute, 00101 Helsinki, Finland 9Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA 10Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany 11European Organization for Nuclear Research (CERN), Geneva, Switzerland 12Institute for Ion and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria 13Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA 14Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA avisitor at: National Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling Lab, Boulder, CO, 80301, USA bformerly at: University of Eastern Finland, Department of Applied Physics, Kuopio, Finland Correspondence to: Michael J. Lawler ([email protected]) Received: 27 April 2016 – Published in Atmos. Chem. Phys. Discuss.: 24 June 2016 Revised: 16 September 2016 – Accepted: 29 September 2016 – Published: 3 November 2016 Abstract. New particle formation driven by acid–base chem- for the collected 10–30 nm VMD particles. This behavior istry was initiated in the CLOUD chamber at CERN by intro- is not consistent with present nanoparticle physicochemical ducing atmospherically relevant levels of gas-phase sulfuric models, which predict a higher dimethylaminium fraction acid and dimethylamine (DMA). Ammonia was also present when NH3 and DMA are present at similar gas-phase con- in the chamber as a gas-phase contaminant from earlier ex- centrations. Despite the presence in the gas phase of at least periments. The composition of particles with volume median 100 times higher base concentrations than sulfuric acid, the diameters (VMDs) as small as 10 nm was measured by the recently formed particles always had measured base : acid ra- Thermal Desorption Chemical Ionization Mass Spectrome- tios lower than 1 : 1. The lowest base fractions were found in ter (TDCIMS). Particulate ammonium-to-dimethylaminium particles below 15 nm VMD, with a strong size-dependent ratios were higher than the gas-phase ammonia-to-DMA ra- composition gradient. The reasons for the very acidic com- tios, suggesting preferential uptake of ammonia over DMA position remain uncertain, but a plausible explanation is that Published by Copernicus Publications on behalf of the European Geosciences Union. 13602 M. J. Lawler et al.: Acidic nanoparticles at CLOUD the particles did not reach thermodynamic equilibrium with particles grow, and water vapor has been shown to be an im- respect to the bases due to rapid heterogeneous conversion of portant contributor to the initial steps of new particle forma- SO2 to sulfate. These results indicate that sulfuric acid does tion (e.g., Zollner et al., 2012, and references therein). While not require stabilization by ammonium or dimethylaminium ammonia is present at much higher concentrations than DMA as acid–base pairs in particles as small as 10 nm. in the remote atmosphere, amines such as DMA can effec- tively compete with ammonia in the growth of nanoparti- cles of ∼ 10 nm diameter (Smith et al., 2010; Barsanti et al., 2009). Measurements made at the CLOUD chamber in 1 Introduction CERN of molecular clusters in the sulfuric acid–base sys- tem show a nucleation process involving stepwise additions Atmospheric new particle formation (NPF) refers to the for- of H2SO4 and base, typically in a 1 : 1 ratio (Kirkby et al., mation and subsequent growth of condensed-phase particles 2011; Schobesberger et al., 2013, 2015; Almeida et al., 2013; from gas-phase precursors. The mechanisms and chemical Kürten et al., 2014; Bianchi et al., 2014). At this early stage species responsible for NPF have been the subject of many in the particle formation process, when there are fewer than recent studies, with the motivation of understanding the im- about 20 molecules in the clusters, ionic acid–base interac- pacts of these processes on air quality and climate. NPF is an tions clearly drive the growth. For these experiments, sulfuric important source of cloud condensation nuclei (CCN) and acid was present at much lower concentrations than were the therefore may significantly affect the global radiative en- bases, so it was the chemical species that limited the growth. ergy balance (Wang and Penner, 2009; Kazil et al., 2010), Here we present chemical composition measurements of but the mechanisms and chemical species driving NPF are recently formed nanoparticles in the size range of 10–30 nm still poorly understood (e.g., Riipinen et al., 2012). Sulfuric in diameter (volume median diameter for collected parti- acid is widely accepted as one of the most important species cles), from experiments conducted in the CLOUD chamber for particle formation in the atmosphere (e.g., Kirkby et al., at CERN. These are the first direct compositional measure- 2011; Kuang et al., 2008; Kulmala et al., 2007; Weber et ments of newly formed particles in this chemical system. al., 1997). However, particle growth rate and composition These observations place constraints on the nature of parti- measurements have indicated that species other than sulfu- cle growth after nucleation in the DMA–NH3–H2SO4–water ric acid dominate growth past the smallest particle sizes in system, with implications for new particle formation in the many environments (O’Dowd et al., 2002; Weber et al., 1997; atmosphere. Smith et al., 2008; Kuang et al., 2010; Bzdek at al., 2012). Three fundamental types of growth pathways for nanopar- ticles have been identified in the literature: reversible con- 2 Laboratory conditions densational growth by low-volatility species, reactive up- take, and acid–base interactions (Riipinen et al., 2012, and The experiments were undertaken at the seventh Cosmics references therein). Recent evidence has supported an im- Leaving Outdoor Droplets (CLOUD7) campaign at CERN portant role for highly oxidized, very low-volatility organic during October 2012. The CLOUD chamber is a 26.1 m3 molecules in the growth of atmospheric nanoparticles (Ehn cylindrical chamber made from electropolished stainless et al., 2014; Zhao et al., 2013; Riccobono et al., 2014). Reac- steel. Efforts were taken in its construction to make it the tive uptake involves the multiphase transformation of a gas- cleanest possible chamber used for studying atmospheric phase species into a new condensed-phase species that is less particle nucleation (Kirkby et al., 2011; Schnitzhofer et al., volatile than its precursor (e.g., Wang et al., 2010). Growth 2014; Duplissy et al., 2016). It can be precisely temperature due to acid–base chemistry results from strong ionic inter- controlled, and UV light at 250–400 nm can be provided to actions, which could be reversed depending on the chemical the chamber with minimal heating via an array of fiber-optic conditions within the cluster or particle (Bzdek et al., 2010; bundles (Kupc et al., 2011). It is possible to eliminate ions Barsanti et al., 2009). from the chamber using a 20 kV m−1 clearing field and con- In the sulfuric acid–dimethylamine–ammonia–water sys- versely to increase the number of chamber ions by directing a tem, the most likely growth pathways involve electrostatic 3.5 GeV pion beam into the chamber. The latter state results interactions arising from proton transfer from sulfuric acid in ion concentrations that are up to an order of magnitude to the base species, direct condensational growth by sulfuric greater than what is present naturally from cosmic ray bom- acid due to its very low saturation vapor pressure, and coag- bardment at the Earth’s surface (Franchin et al., 2015). ulation of particles and/or clusters. Dimethylamine (DMA) Clean air and reagents were added to the chamber on a and ammonia on their own are quite volatile gases, and sig- continuous basis, yielding a roughly 4 h overturning time for nificant growth by water vapor condensation alone is unfa- the chamber. The chamber conditions were set to simulate vorable due to the Kelvin effect until the particles are larger atmospheric conditions relevant to the lower troposphere. than about 50 nm in diameter. Nonetheless, all of these com- The main constituent gases
Recommended publications
  • EPA Method 8: Determination of Sulfuric Acid and Sulfur Dioxide
    733 METHOD 8 - DETERMINATION OF SULFURIC ACID AND SULFUR DIOXIDE EMISSIONS FROM STATIONARY SOURCES NOTE: This method does not include all of the specifications (e.g., equipment and supplies) and procedures (e.g., sampling and analytical) essential to its performance. Some material is incorporated by reference from other methods in this part. Therefore, to obtain reliable results, persons using this method should have a thorough knowledge of at least the following additional test methods: Method 1, Method 2, Method 3, Method 5, and Method 6. 1.0 Scope and Application. 1.1 Analytes. Analyte CAS No. Sensitivity Sulfuric acid, including: 0.05 mg/m3 Sulfuric acid 7664-93-9 (0.03 × 10-7 3 (H2SO4) mist 7449-11-9 lb/ft ) Sulfur trioxide (SO3) 3 Sulfur dioxide (SO2) 7449-09-5 1.2 mg/m (3 x 10-9 lb/ft3) 1.2 Applicability. This method is applicable for the determination of H2SO4 (including H2SO4 mist and SO3) and gaseous SO2 emissions from stationary sources. NOTE: Filterable particulate matter may be determined along with H2SO4 and SO2 (subject to the approval of the Administrator) by inserting a heated glass fiber filter 734 between the probe and isopropanol impinger (see Section 6.1.1 of Method 6). If this option is chosen, particulate analysis is gravimetric only; sulfuric acid is not determined separately. 1.3 Data Quality Objectives. Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. 2.0 Summary of Method. A gas sample is extracted isokinetically from the stack.
    [Show full text]
  • Nitration of Naphthalene and Remarks on the Mechanism of Electrophilic Aromatic Nitration* (Two-Step Mechanism) GEORGE A
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 6, pp. 3298-3300, June 1981 Chemistry Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration* (two-step mechanism) GEORGE A. OLAH, SUBHASH C. NARANG, AND JUDITH A. OLAH Institute of Hydrocarbon Chemistry, Department of Chemistry, University of Southern California, Los Angeles, California 90007 Contributed by George A. Olah, March 2, 1981 ABSTRACT Naphthalene was nitrated with a variety of ni- Table 1. Nitration of naphthalene with various nitrating agents trating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977)J. Am. Chem. Soc. 99, 5516-5518] a/p shows that nitration of naphthalene gives an a-nitronaphthalene Temp, isomer to fi-nitronaphthalene ratio that varies between 9 and 29 and is Reagent Solvent OC ratio Ref. thus not constant. Perrin's data, therefore, are considered to be NO2BF4 Sulfolane 25 10 * inconclusive evidence for the proposed one-electron transfer NO2BF4 Nitromethane 25 12 mechanism for the nitration of naphthalene and other reactive HNO3 Nitromethane 25 29 1 aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., HNO3 Acetic acid 25 21 1 Penton, J. R. & Schoefield, K. (1971) Nitration andAromatic Reac- HNO3 Acetic acid 50 16 1 tivity (Cambridge Univ. Press, London)], as well as Perrin, in- HNO3 Sulfuric acid 70 22 1 dependently concluded that, in the general scheme of nitration of HNO3 Acetic 25 9 reactive aromatics, there is the necessity to introduce into the clas- anhydride sical Ingold mechanism an additional step involving a distinct in- CH30NOjCH3OSO2F Acetonitrile 25 13 * termediate preceding the formation ofthe Wheland intermediate AgNO3/CH3COCI Acetonitrile 25 12 * (o complexes).
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Dissociation Constants and Ph-Titration Curves at Constant Ionic Strength from Electrometric Titrations in Cells Without Liquid
    U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP1537 Part of Journal of Research of the N.ational Bureau of Standards, Volume 30, May 1943 DISSOCIATION CONSTANTS AND pH-TITRATION CURVES AT CONSTANT IONIC STRENGTH FROM ELECTRO­ METRIC TITRATIONS IN CELLS WITHOUT LIQUID JUNCTION : TITRATIONS OF FORMIC ACID AND ACETIC ACID By Roger G. Bates, Gerda L. Siegel, and S. F. Acree ABSTRACT An improved method for obtaining the titration curves of monobasic acids is outlined. The sample, 0.005 mole of the sodium salt of the weak acid, is dissolver! in 100 ml of a 0.05-m solution of sodium chloride and titrated electrometrically with an acid-salt mixture in a hydrogen-silver-chloride cell without liquid junction. The acid-salt mixture has the composition: nitric acid, 0.1 m; pot assium nitrate, 0.05 m; sodium chloride, 0.05 m. The titration therefore is performed in a. medium of constant chloride concentration and of practically unchanging ionic­ strength (1'=0.1) . The calculations of pH values and of dissociation constants from the emf values are outlined. The tit ration curves and dissociation constants of formic acid and of acetic acid at 25 0 C were obtained by this method. The pK values (negative logarithms of the dissociation constants) were found to be 3.742 and 4. 754, respectively. CONTENTS Page I . Tntroduction __ _____ ~ __ _______ . ______ __ ______ ____ ________________ 347 II. Discussion of the titrat ion metbod __ __ ___ ______ _______ ______ ______ _ 348 1. Ti t;at~on. clU,:es at constant ionic strength from cells without ltqUld JunctlOlL - - - _ - __ _ - __ __ ____ ____ _____ __ _____ ____ __ _ 349 2.
    [Show full text]
  • Sulfuric Acid
    TECHNICAL BULLETIN 19 Motivation Dve Wangara, WA, 6065 AUSTRALIA T +61 8 9302 4000 | FREE 1800 999 196 | F +61 8 9302 5000 SULFURIC ACID MATERIAL & FUNCTION General: Sulfuric Acid (H2SO4) (also spelled Sulphuric Acid) is a strong mineral acid used in many industrial processes as well as batteries. It is one of the largest inorganic industrial chemicals produced by tonnage. The quantity of sulfuric acid produced has been used as an indicator of a country’s industrial status. Uses: Sulfuric acid is one of the most important industrial chemicals. More of it is made each year than is made of any other manufactured chemical. It has widely varied uses and plays some part in the production of nearly all manufactured goods. The major use of sulfuric acid is in the production of fertilizers, e.g., superphosphate of lime and ammonium sulfate. Sulfuric acid is a strong acid used as an intermediate in the synthesis of linear alkylbenzene sulfonate surfactants used in dyes, in petroleum refining, for the nitration of explosives, in the manufacture of nitrocellulose, in caprolactam manufacturing, as the electrolyte in lead-acid batteries, and as a drying agent for chlorine and nitric acid It is used in petroleum refining to wash impurities out of gasoline and other refinery products. Sulfuric acid is used in processing metals, e.g., in pickling (cleaning) iron and steel before plating them with tin or zinc. Rayon is made with sulfuric acid. It serves as the electrolyte in the lead-acid storage battery commonly used in motor vehicles (acid for this use, containing about 33% H2SO4 and with specific gravity about 1.25, is often called battery acid).
    [Show full text]
  • Preparation of 5-Bromo-2-Naphthol: the Use of a Sulfonic Acid As a Protecting and Activating Group
    Molbank 2009, M602 OPEN ACCESS molbank ISSN 1422-8599 www.mdpi.com/journal/molbank Short Note Preparation of 5-Bromo-2-naphthol: The Use of a Sulfonic Acid as a Protecting and Activating Group Renata Everett, Jillian Hamilton and Christopher Abelt * Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 2 June 2009 / Accepted: 25 June 2009 / Published: 29 June 2009 Abstract: The preparation of 5-bromo-2-naphthol (4) in three steps from 5-amino-2- naphthol (1) is described. A sulfonic acid group is introduced at the 1-position as an activating and protecting group for the Sandmeyer reaction. The sulfonate group allows for the use of only water and sulfuric acid as solvents. The sulfonic acid is introduced with three equivalents of sulfuric acid, and it is removed in 20% aq. sulfuric acid. Keywords: Sandmeyer reaction; protecting group; sulfonation; desulfonation 1. Introduction Regioselective synthesis of disubstituted naphthalenes can be challenging especially when the substituents are on different rings. We needed 5-bromo-2-naphthol (4) as a starting material for a multistep synthesis. This simple derivative is virtually unknown [1,2]. The most direct route to 4 is from 5-amino-2-naphthol (1) using the Sandmeyer reaction. Unfortunately, the Sandmeyer reaction fails with 1 because the hydroxyl group is too activating. Even when the hydroxyl group is protected as a methyl ether, the normal solution-phase Sandmeyer reaction employing cuprous salts is still problematic. In their preparation of 5-bromo-2-methoxynaphthalene, Dauben and co-workers resorted to pyrolysis of the diazonium ion double salt with HgBr2, but this procedure gives just a 30% yield of the bromide [3].
    [Show full text]
  • Nitration of Toluene (Electrophilic Aromatic Substitution)
    Nitration of Toluene (Electrophilic Aromatic Substitution) Electrophilic aromatic substitution represents an important class of reactions in organic synthesis. In "aromatic nitration," aromatic organic compounds are nitrated via an electrophilic aromatic substitution mechanism involving the attack of the electron-rich benzene ring on the nitronium ion. The formation of a nitronium ion (the electrophile) from nitric acid and sulfuric acid is shown below. The sulfuric acid is regenerated and hence acts as a catalyst. It also absorbs water to drive the reaction forward. Figure 1: The mechanism for the formation of a nitronium ion. The methyl group of toluene makes it around 25 times more reactive than benzene in electrophilic aromatic substitution reactions. Toluene undergoes nitration to give ortho and para nitrotoluene isomers, but if heated it can give dinitrotoluene and ultimately the explosive trinitrotoluene (TNT). Figure 2: Reaction of nitric acid and sulfuric acid with toluene. Procedure: 1. Place a 5 mL conical vial, equipped with a spin vane, in a crystallizing dish filled with ice-water placed on a stirrer. 2. Pour 1.0 mL of concentrated nitric acid into the vial. While stirring, slowly add 1.0 mL of concentrated sulfuric acid. 3. After the addition of sulfuric acid is complete, add 1.0 mL of toluene dropwise and slowly over a period of 5 minutes (slow down if you see boiling. Reaction produces a lot of heat). 4. While Stirring, allow the contents of the flask to reach the room temperature. Stir at room temperature for another 5 minutes. 5. Add 10 mL of water into a small separatory funnel.
    [Show full text]
  • Two-Stage, Dilute Sulfuric Acid Hydrolysis of Hardwood for Ethanol Production
    TWO-STAGE, DILUTE SULFURIC ACID HYDROLYSIS OF HARDWOOD FOR ETHANOL PRODUCTION John F. Harris, B.S. Chemical Engineer Andrew J. Baker, B.S. Chemical Engineer John I. Zerbe, Ph.D. Program Manager Energy Research, Development, and Application Forest Products Laboratory, Forest Service, USDA Madison, Wisconsin53705 ABSTRACT The Forest Products Laboratory has developed fundamental kinetic relationships for the hydrolysis of lignocellulose dating back to World War II. Recent work at the Laboratory has provided additional informa­ tion on hydrolysis of red oak by a two-stage process at higher tempera­ tures with lower liquid-to-solid ratios. The complications of working with mixtures of sugars and acetic acid (6 percent of oak) are such that effective fractionation is necessary. This is best accomplished by prehydrolysis using dilute sulfuric acid. Dilute acid hydrolysis is also currently the best method for conversion of the residual prehydro­ lyzed lignocellulose to glucose. The course and yield of reactions are well predicted by kinetics data, but more attention needs to be given to the effects of ash constituents on the catalyst acid and the rever­ sion reaction, and in reducing the water-to-wood ratio in hydrolysis. The purity of the solutions generated by the two-stage process is considerably better than that obtained by the previous percolation process, but this advantage is offset somewhat by the higher yields of the percolation process. Projections on the economics of the two-stage process, although better than for processes based on prior technology, are still considered high risk. 1151 TWO-STAGE, DILUTE SULFURIC ACID HYDROLYSIS OF HARDWOOD FOR ETHANOL PRODUCTION INTRODUCTION Interest in wood hydrolysis dates to 1819 when Braconnot dis­ covered that cellulose could be dissolved in concentrated acid solutions and converted to sugar.
    [Show full text]
  • Amine Oxide SIAR
    OECD SIDS AMINE OXIDES SIDS Initial Assessment Report For SIAM 22 Paris, France, 18-21 April 2006 Category Name: Amine Oxides CAS Numbers: 1643-20-5 1-Dodecanamine, N,N-dimethyl-, N-oxide 3332-27-2 1-Tetradecanamine, N,N-dimethyl-, N-oxide 70592-80-2 Amines, C10-16-alkyldimethyl, N-oxides 68955-55-5 Amines, C12-18-alkyldimethyl, N-oxides 2605-79-0 Decanamine, N,N-dimethyl-, N-oxide 7128-91-8 Hexadecanamine, N,N-dimethyl-, N-oxide 2571-88-2 Octadecanamine, N,N-dimethyl-, N-oxide 61788-90-7 Amine oxides, cocoalkyldimethyl 85408-48-6 Amines, C10-18-alkyldimethyl, N-oxides 85408-49-7 Amines, C12-16-alkyldimethyl, N-oxides 61791-47-7 Ethanol, 2,2'-iminobis-, N-coco alkyl derivs., N- oxides 2530-44-1 Ethanol, 2,2'-(dodecyloxidoimino)bis- 14048-77-2 Ethanol, 2,2'-(octadecyloxidoimino)bis- 61791-46-6 Ethanol, 2,2'-iminobis-, N-tallow alkyl derivs., N- oxides 93962-62-0 Ethanol, 2,2'-[(9Z)-9-octadecenyloxidoimino]bis- 3. Sponsor Country: United States 4. Shared Partnership with: Amine Oxides Consortium 5. Roles/Responsibilities of Industry was the main preparer; U.S. EPA was the main reviewer the Partners: Name of industry sponsor or Amine Oxides Consortium consortium Process used Industry coalition conducted a comprehensive literature search, including all generally accepted databases, reference books, unpublished studies and data in company files, and prepared first drafts; U.S. EPA reviewed and edited drafts to achieve a final document. 6. Sponsorship History How was the chemical or The industry coalition agreed to sponsor AOs in the SIDS-ICCA category brought into the program, with the U.S.
    [Show full text]
  • United States Patent Office Patented Aug
    3,755,559 United States Patent Office Patented Aug. 28, 1973 1. 2 of 11 to 18 carbon atoms. Soaps of dicarboxylic acids 3,755,559 may also be used such as the soaps of dimerized linoleic HIGH-LATHERNG CONDITIONING SHAMPOO COMPOSTON acid. Soaps of such other higher molecular weight acids Gordon Trent Hewitt, Upper Montclair, N.J., assignor to such as rosin or tall oil acids, e.g. abietic acid, may also Colgate-Palmolive Company, New York, N.Y. be employed. Specific examples include triethanolamine No Drawing. Continuation of abandoned application Ser. myristrate, triethanolamine cocoate, potassium isostearate, No. 816,395, Apr. 15, 1969. This application Aug. 23, potassium myristate and the like. The soap functions as 1971, Ser. No. 174,192 an opacifier and thickener and contributes some condi The portion of the term of the patent subsequent to tioning properties to the instant composition. Since fatty Jan. 16, 1990 has been disclaimed 10 acids are a natural ingredient of the skin, the usefulness Int, Cl, A61k 7/08, C11d 1/84 of soap for cosmetic purposes as an ingredient of a sham U.S. C. 424-70 7 Claims poo is desirable. The water-soluble tertiary amine oxide which con ABSTRACT OF THE DISCLOSURE stitutes the major ingredient of this composition may be This disclosure relates to a stable, creamy-foam sham 15 represented by the general formula: RR2R3N->O where poo comprising a tertiary amine oxide, a higher alkyl in R1 is a higher alkyl radical having from 10 to 18 betaine or sulphobetaine and a soap in the ratio of carbon atoms, such as lauryl, decyl, cetyl, oleyl, stearyl, 2:1:1, respectively.
    [Show full text]
  • Department of Homeland Security (Dhs) Appendix a Chemicals of Interest (Coi)
    DEPARTMENT OF HOMELAND SECURITY (DHS) APPENDIX A CHEMICALS OF INTEREST (COI) Acetaldehyde Bromine trifluoride Acetone Cyanohydrin, stabilized Bromothrifluorethylene Acetyl bromide 1,3-Butadiene Acetyl chloride Butane Acetyl iodide Butene Acetylene 1-Butene Acrolein 2-Butene Acrylonitrile 2-Butene-cis Acrylyl chloride 2-Butene-trans Allyl alcohol Butyltrichlorosilane Allylamine Calcium hydrosulfite Allyltrichlorosilane, stabilized Calcium phosphide Aluminum (powder) Carbon disulfide Aluminum Bromide, anhydrous Carbon oxysulfide Aluminum Chloride, anhydrous Carbonyl fluoride Aluminum phosphide Carbonyl sulfide Ammonia (anhydrous) Chlorine Ammonia (conc 20% or greater) Chlorine dioxide Ammonium nitrate, note #1 Chlorine monoxide Ammonium nitrate, note #2 Chlorine pentafluoride Ammonium perchlorate Chlorine trifluoride Ammonium picrate Chloroacetyl chloride Amyltrichlorosilane 2-Chloroethylchloro-methylsulfide Antimony pentafluoride Chloroform Arsenic trichloride Chloromethyl ether Arsine Chloromethyl methyl ether Barium azide 1-Chloropropylene 1,4-Bis(2-chloroethylthio)-n-butane 2-Chloropropylene Bis(2-chloroethylthio) methane Chlorosarin Bis(2-chloroethylthiomethyl)ether Chlorosoman 1,5-Bis(2-chloroethylthio)-n-pentane Chlorosulfonic acid 1,3-Bis(2-chloroethylthio)-n-propane Chromium oxychloride Boron tribromide Crotonaldehyde Boron trichloride Crotonaldehyde, (E)- Boron trifluoride Cyanogen Boron trifluoride compound with methyl Cyanogen chloride ether (1:1) Cyclohexylamine Bromine Cyclohexyltrichlorosilane Bromine chloride Cyclopropane
    [Show full text]
  • Ph Calculations
    03.10.2018 pH calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases • Acid is a proton donor • Base is a proton acceptor + - HCl(aq) + H 2O(l) H3O (aq) + Cl (aq) Acid Base Conjugate Conjugate acid base + - H2O(l) + NH 3(aq) NH 4 (aq) + OH (aq) AcidBase Conjugate Conjugate acid base 1 03.10.2018 Which of the following are conjugate acid-base pairs? A) HCl, NaOH - B) H 2O, OH 2- C) H 2SO 4, SO 4 - D) H 2SO 3, HSO 3 - E) HClO 4, ClO 3 + F) H 3C-NH 2, H 3C-NH 3 Autoionization of water Water is amphoteric as it can behave both as acid and base + - 2 H 2O(l) H3O (aq) + OH (aq) Ion-product constant for water: + - + - Kw = [H3O ][OH ] = [H ][OH ] In pure water at 25 ºC: [H +] = [OH -] = 1.0 × 10 -7 mol/L -7 -7 -14 2 2 Kw = (1.0 × 10 mol/L)×( 1.0 × 10 mol/L) = 1.0 × 10 mol /L Constant! 2 03.10.2018 pH Activity = f . c + pH= -log 10 (activity of H ) f is activity coefficient, pOH= -log (activity of OH -) f<1, 10 c is molar concentration Ion-product of water (constant!): pH + pOH = 14 E.g.: pH=7 (neutral): [H +] = 10 -7 M = 0.0000001 mol/L pH=1 (acidic): [H +] = 10 -1 M = 0.1 mol/L pH=13 (alkaline): [H +] = 10 -13 M = 0.0000000000001 mol/L Strong acid E.g. HCl, HNO 3, H 2SO 4 In aqueous solution fully dissociates to H + and A − pH of strong acid can be calculated as pH = −log (f × [H +]) For HCl: [H +]= [HCl] + For H2SO 4: [H ]= ~ [H2SO 4] nd + -2 (2 H does not fully dissociate, Kd= ~10 ) 3 03.10.2018 Calculating the pH of strong acid solutions Example: Calculate the pH of 0.06 mol/L HCl.
    [Show full text]