Dissociation Constants and Ph-Titration Curves at Constant Ionic Strength from Electrometric Titrations in Cells Without Liquid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EPA Method 8: Determination of Sulfuric Acid and Sulfur Dioxide
733 METHOD 8 - DETERMINATION OF SULFURIC ACID AND SULFUR DIOXIDE EMISSIONS FROM STATIONARY SOURCES NOTE: This method does not include all of the specifications (e.g., equipment and supplies) and procedures (e.g., sampling and analytical) essential to its performance. Some material is incorporated by reference from other methods in this part. Therefore, to obtain reliable results, persons using this method should have a thorough knowledge of at least the following additional test methods: Method 1, Method 2, Method 3, Method 5, and Method 6. 1.0 Scope and Application. 1.1 Analytes. Analyte CAS No. Sensitivity Sulfuric acid, including: 0.05 mg/m3 Sulfuric acid 7664-93-9 (0.03 × 10-7 3 (H2SO4) mist 7449-11-9 lb/ft ) Sulfur trioxide (SO3) 3 Sulfur dioxide (SO2) 7449-09-5 1.2 mg/m (3 x 10-9 lb/ft3) 1.2 Applicability. This method is applicable for the determination of H2SO4 (including H2SO4 mist and SO3) and gaseous SO2 emissions from stationary sources. NOTE: Filterable particulate matter may be determined along with H2SO4 and SO2 (subject to the approval of the Administrator) by inserting a heated glass fiber filter 734 between the probe and isopropanol impinger (see Section 6.1.1 of Method 6). If this option is chosen, particulate analysis is gravimetric only; sulfuric acid is not determined separately. 1.3 Data Quality Objectives. Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. 2.0 Summary of Method. A gas sample is extracted isokinetically from the stack. -
Hypochlorous Acid Handling
Hypochlorous Acid Handling 1 Identification of Petitioned Substance 2 Chemical Names: Hypochlorous acid, CAS Numbers: 7790-92-3 3 hypochloric(I) acid, chloranol, 4 hydroxidochlorine 10 Other Codes: European Community 11 Number-22757, IUPAC-Hypochlorous acid 5 Other Name: Hydrogen hypochlorite, 6 Chlorine hydroxide List other codes: PubChem CID 24341 7 Trade Names: Bleach, Sodium hypochlorite, InChI Key: QWPPOHNGKGFGJK- 8 Calcium hypochlorite, Sterilox, hypochlorite, UHFFFAOYSA-N 9 NVC-10 UNII: 712K4CDC10 12 Summary of Petitioned Use 13 A petition has been received from a stakeholder requesting that hypochlorous acid (also referred 14 to as electrolyzed water (EW)) be added to the list of synthetic substances allowed for use in 15 organic production and handling (7 CFR §§ 205.600-606). Specifically, the petition concerns the 16 formation of hypochlorous acid at the anode of an electrolysis apparatus designed for its 17 production from a brine solution. This active ingredient is aqueous hypochlorous acid which acts 18 as an oxidizing agent. The petitioner plans use hypochlorous acid as a sanitizer and antimicrobial 19 agent for the production and handling of organic products. The petition also requests to resolve a 20 difference in interpretation of allowed substances for chlorine materials on the National List of 21 Allowed and Prohibited Substances that contain the active ingredient hypochlorous acid (NOP- 22 PM 14-3 Electrolyzed water). 23 The NOP has issued NOP 5026 “Guidance, the use of Chlorine Materials in Organic Production 24 and Handling.” This guidance document clarifies the use of chlorine materials in organic 25 production and handling to align the National List with the November, 1995 NOSB 26 recommendation on chlorine materials which read: 27 “Allowed for disinfecting and sanitizing food contact surfaces. -
United States Patent Office
2,752,270 United States Patent Office Patented June 26, 1956 2 These impurities impair the crystallization of the solu 2,752,270 tions for the recovery of glucose; on the one hand, they PROCESS OF HYDROLYZNG wooD N PRE. increase the solubility of the glucose in the solvent, and PARNG CRYSTALLINE GLUCOSE on the other hand they retard the growth of the glucose Hugo Specht, Mannheim-Rheinau, Germany, assignor 5 crystals which remain so snail as to be very difficult to to Deutsche Bergin-Aktiengesellschaft, Mannheim separate from the syrup. I have found that crystalline Rheinau, Germany glucose can be obtained in good yields only when the No Drawing. Application January 5, 1954, Wood sugar Solution subjected to crystallization is so Serial No. 402,401 prepared as to consist essentially of glucose and to be free Claims priority, application Germany January 31, 1949 0 as far as possible from the recited impurities, including mannose. According to the invention, cellulosic ma 4 Claims. (C. 127-37) terial, for instance wood, is essentially freed from hemi The invention relates to improvements in the prepara celluloses; the residue should contain not more than tion of crystalline glucose by the hydrolysis of wood and about 5-6 per cent of sugars other than glucose, cal is a continuation-in-part of my copending application, 5 culated on the total content of carbohydrates, and is Serial No. 242,172, filed August 16, 1951, now aban then hydrolyzed with superconcentrated (39–42%) hy doned. drochloric acid. The thus obtained strongly acidic sugar Several processes have already been proposed for the solution is freed from hydrochloric acid by evaporation recovery of crystalline glucose from wood sugar solu So as to leave only a small residue of the acid; the mass tions, but they could not be economically operated on a 20 is then diluted to form a liquor containing about 10 to large scale. -
Solubility Equilibria (Sec 6-4)
Solubility Equilibria (Sec 6-4) Ksp = solubility product AgCl(s) = Ag+(aq) + Cl-(aq) Ksp = 2+ - CaF2(s) = Ca (aq) + 2F (aq) Ksp = n+ m- in general AmBn = mA + nB n+ m m- n Ksp = [A ] [B ] We use Ksp to calculate the equilibrium solubility of a compound. Calculating the Solubility of an Ionic Compound (p.131) 2+ - PbI2 = Pb + 2I 1 n+ m- in general for AmBn = mA + nB The Common Ion Effect (p. 132) What happens to the solubility of PbI2 if we add a - second source of I (e.g. the PbI2 is being dissolved in a solution of 0.030 M NaI)? The common ion = 2+ - PbI2 = Pb + 2I 2 Ch 12: A Deeper Look at Chemical Equilibrium Up to now we've ignored two points- 1. 2. 2+ - PbI2(s) = Pb (aq) + 2I (aq) -9 + - Ksp = 7.9 x 10 (ignoring PbOH , PbI3 , etc) K'sp = 3 Activity Coefficients - concentrations are replaced by "activities" aA + bB = cC + dD [C]c [D]d K old definition [A]a [B]b γc [C]c γd [D]d K C D new definition using activity γa [A]a γb [B]b A B We can calculate the activity coefficients if we know what the ionic strength of the solution is. Charge Effects - an ion with a +2 charge affects activity of a given electrolyte more than an ion with a +1 charge = ionic strength, a measure of the magnitude of the electrostatic environment 1 2 μ C Z Ci = concentration 2 i i Zi = charge e.g. calculate the ionic strength of an aqueous soln of 0.50M NaCl and 0.75M MgCl2 4 The Extended Huckel-Debye Equation 0.51z 2 log A 1 / 305 A = activity coefficient Z = ion charge = ionic strength (M) = hydrated radius (pm) works well for 0.10M 5 6 Example (p. -
Guidance for Identification and Naming of Substance Under REACH
Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 GUIDANCE Guidance for identification and naming of substances under REACH and CLP May 2017 Version 2.1 2 Guidance for identification and naming of substances under REACH and CLP Version 2.1 - May 2017 LEGAL NOTICE This document aims to assist users in complying with their obligations under the REACH and CLP regulations. However, users are reminded that the text of the REACH and CLP Regulations is the only authentic legal reference and that the information in this document does not constitute legal advice. Usage of the information remains under the sole responsibility of the user. The European Chemicals Agency does not accept any liability with regard to the use that may be made of the information contained in this document. Guidance for identification and naming of substances under REACH and CLP Reference: ECHA-16-B-37.1-EN Cat. Number: ED-07-18-147-EN-N ISBN: 978-92-9495-711-5 DOI: 10.2823/538683 Publ.date: May 2017 Language: EN © European Chemicals Agency, 2017 If you have any comments in relation to this document please send them (indicating the document reference, issue date, chapter and/or page of the document to which your comment refers) using the Guidance feedback form. The feedback form can be accessed via the EVHA Guidance website or directly via the following link: https://comments.echa.europa.eu/comments_cms/FeedbackGuidance.aspx European Chemicals Agency Mailing address: P.O. Box 400, FI-00121 Helsinki, Finland Visiting address: Annankatu 18, Helsinki, Finland Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 PREFACE This document describes how to name and identify a substance under REACH and CLP. -
Nitration of Naphthalene and Remarks on the Mechanism of Electrophilic Aromatic Nitration* (Two-Step Mechanism) GEORGE A
Proc. Nati. Acad. Sci. USA Vol. 78, No. 6, pp. 3298-3300, June 1981 Chemistry Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration* (two-step mechanism) GEORGE A. OLAH, SUBHASH C. NARANG, AND JUDITH A. OLAH Institute of Hydrocarbon Chemistry, Department of Chemistry, University of Southern California, Los Angeles, California 90007 Contributed by George A. Olah, March 2, 1981 ABSTRACT Naphthalene was nitrated with a variety of ni- Table 1. Nitration of naphthalene with various nitrating agents trating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977)J. Am. Chem. Soc. 99, 5516-5518] a/p shows that nitration of naphthalene gives an a-nitronaphthalene Temp, isomer to fi-nitronaphthalene ratio that varies between 9 and 29 and is Reagent Solvent OC ratio Ref. thus not constant. Perrin's data, therefore, are considered to be NO2BF4 Sulfolane 25 10 * inconclusive evidence for the proposed one-electron transfer NO2BF4 Nitromethane 25 12 mechanism for the nitration of naphthalene and other reactive HNO3 Nitromethane 25 29 1 aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., HNO3 Acetic acid 25 21 1 Penton, J. R. & Schoefield, K. (1971) Nitration andAromatic Reac- HNO3 Acetic acid 50 16 1 tivity (Cambridge Univ. Press, London)], as well as Perrin, in- HNO3 Sulfuric acid 70 22 1 dependently concluded that, in the general scheme of nitration of HNO3 Acetic 25 9 reactive aromatics, there is the necessity to introduce into the clas- anhydride sical Ingold mechanism an additional step involving a distinct in- CH30NOjCH3OSO2F Acetonitrile 25 13 * termediate preceding the formation ofthe Wheland intermediate AgNO3/CH3COCI Acetonitrile 25 12 * (o complexes). -
APPENDIX G Acid Dissociation Constants
harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants § ϭ 0.1 M 0 ؍ (Ionic strength ( † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form. -
Sulfuric Acid
TECHNICAL BULLETIN 19 Motivation Dve Wangara, WA, 6065 AUSTRALIA T +61 8 9302 4000 | FREE 1800 999 196 | F +61 8 9302 5000 SULFURIC ACID MATERIAL & FUNCTION General: Sulfuric Acid (H2SO4) (also spelled Sulphuric Acid) is a strong mineral acid used in many industrial processes as well as batteries. It is one of the largest inorganic industrial chemicals produced by tonnage. The quantity of sulfuric acid produced has been used as an indicator of a country’s industrial status. Uses: Sulfuric acid is one of the most important industrial chemicals. More of it is made each year than is made of any other manufactured chemical. It has widely varied uses and plays some part in the production of nearly all manufactured goods. The major use of sulfuric acid is in the production of fertilizers, e.g., superphosphate of lime and ammonium sulfate. Sulfuric acid is a strong acid used as an intermediate in the synthesis of linear alkylbenzene sulfonate surfactants used in dyes, in petroleum refining, for the nitration of explosives, in the manufacture of nitrocellulose, in caprolactam manufacturing, as the electrolyte in lead-acid batteries, and as a drying agent for chlorine and nitric acid It is used in petroleum refining to wash impurities out of gasoline and other refinery products. Sulfuric acid is used in processing metals, e.g., in pickling (cleaning) iron and steel before plating them with tin or zinc. Rayon is made with sulfuric acid. It serves as the electrolyte in the lead-acid storage battery commonly used in motor vehicles (acid for this use, containing about 33% H2SO4 and with specific gravity about 1.25, is often called battery acid). -
Preparation of 5-Bromo-2-Naphthol: the Use of a Sulfonic Acid As a Protecting and Activating Group
Molbank 2009, M602 OPEN ACCESS molbank ISSN 1422-8599 www.mdpi.com/journal/molbank Short Note Preparation of 5-Bromo-2-naphthol: The Use of a Sulfonic Acid as a Protecting and Activating Group Renata Everett, Jillian Hamilton and Christopher Abelt * Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 2 June 2009 / Accepted: 25 June 2009 / Published: 29 June 2009 Abstract: The preparation of 5-bromo-2-naphthol (4) in three steps from 5-amino-2- naphthol (1) is described. A sulfonic acid group is introduced at the 1-position as an activating and protecting group for the Sandmeyer reaction. The sulfonate group allows for the use of only water and sulfuric acid as solvents. The sulfonic acid is introduced with three equivalents of sulfuric acid, and it is removed in 20% aq. sulfuric acid. Keywords: Sandmeyer reaction; protecting group; sulfonation; desulfonation 1. Introduction Regioselective synthesis of disubstituted naphthalenes can be challenging especially when the substituents are on different rings. We needed 5-bromo-2-naphthol (4) as a starting material for a multistep synthesis. This simple derivative is virtually unknown [1,2]. The most direct route to 4 is from 5-amino-2-naphthol (1) using the Sandmeyer reaction. Unfortunately, the Sandmeyer reaction fails with 1 because the hydroxyl group is too activating. Even when the hydroxyl group is protected as a methyl ether, the normal solution-phase Sandmeyer reaction employing cuprous salts is still problematic. In their preparation of 5-bromo-2-methoxynaphthalene, Dauben and co-workers resorted to pyrolysis of the diazonium ion double salt with HgBr2, but this procedure gives just a 30% yield of the bromide [3]. -
Safe Handling and Disposal of Chemicals Used in the Illicit Manufacture of Drugs
Vienna International Centre, PO Box 500, 1400 Vienna, Austria Tel.: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org Guidelines for the Safe handling and disposal of chemicals used in the illicit manufacture of drugs United Nations publication USD 26 Printed in Austria ISBN 978-92-1-148266-9 Sales No. E.11.XI.14 ST/NAR/36/Rev.1 V.11-83777—September*1183777* 2011—300 Guidelines for the Safe handling and disposal of chemicals used in the illlicit manufacture of drugs UNITED NATIONS New York, 2011 Symbols of United Nations documents are composed of letters combined with figures. Mention of such symbols indicates a reference to a United Nations document. ST/NAR/36/Rev.1 UNITED NATIONS PUBLICATION Sales No. E.11.XI.14 ISBN 978-92-1-148266-9 eISBN 978-92-1-055160-1 © United Nations, September 2011. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Requests for permission to reproduce this work are welcomed and should be sent to the Secretary of the Publications Board, United Nations Headquarters, New York, N.Y. 10017, U.S.A. or also see the website of the Board: https://unp.un.org/Rights.aspx. Governments and their institutions may reproduce this work without prior authoriza- tion but are requested to mention the source and inform the United Nations of such reproduction. -
Simple Mixtures
Simple mixtures Before dealing with chemical reactions, here we consider mixtures of substances that do not react together. At this stage we deal mainly with binary mixtures (mixtures of two components, A and B). We therefore often be able to simplify equations using the relation xA + xB = 1. A restriction in this chapter – we consider mainly non-electrolyte solutions – the solute is not present as ions. The thermodynamic description of mixtures We already considered the partial pressure – the contribution of one component to the total pressure, when we were dealing with the properties of gas mixtures. Here we introduce other analogous partial properties. Partial molar quantities: describe the contribution (per mole) that a substance makes to an overall property of mixture. The partial molar volume, VJ – the contribution J makes to the total volume of a mixture. Although 1 mol of a substance has a characteristic volume when it is pure, 1 mol of a substance can make different contributions to the total volume of a mixture because molecules pack together in different ways in the pure substances and in mixtures. Imagine a huge volume of pure water. When a further 1 3 mol H2O is added, the volume increases by 18 cm . When we add 1 mol H2O to a huge volume of pure ethanol, the volume increases by only 14 cm3. 18 cm3 – the volume occupied per mole of water molecules in pure water. 14 cm3 – the volume occupied per mole of water molecules in virtually pure ethanol. The partial molar volume of water in pure water is 18 cm3 and the partial molar volume of water in pure ethanol is 14 cm3 – there is so much ethanol present that each H2O molecule is surrounded by ethanol molecules and the packing of the molecules results in the water molecules occupying only 14 cm3. -
Containing Alloys in Hydrochloric Acid, Hydrogen Chloride and Chlorine (Ceb-3)
CORROSION RESISTANCE OF NICKEL AND NICKEL- CONTAINING ALLOYS IN HYDROCHLORIC ACID, HYDROGEN CHLORIDE AND CHLORINE (CEB-3) A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS NO 279 Distributed by Produced by NICKEL INCO INSTITUTE CORROSION RESISTANCE OF NICKEL AND NICKEL-CONTAINING ALLOYS IN HYDROCHLORIC ACID, HYDROGEN CHLORIDE AND CHLORINE (CEB-3) A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS NO 279 This handbook was first published prior to 1985 by INCO, The International Nickel Company, Inc. Today this company is part of Vale S.A. The Nickel Institute republished the handbook in 2020. Despite the age of this publication the information herein is considered to be generally valid. Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein. Nickel Institute [email protected] www.nickelinstitute.org Nickel-clad steel jacketed reactor used for organic chlorinations. It was built in accordance with the A.P.I. A.S.M.E. code for unfired pressure vessels and operates at a temperature of 650° F, and pressures of 25 lb. per sq. in in the body and 125 Ib per sq. in. in the jacket. Page 2 Resistance of Nickel and High Nickel Alloys to Corrosion by Hydrochloric Acid, Hydrogen Chloride and Chlorine† CONTENTS HYDROCHLORIC ACID .................................................