Chapter 9 Ideal and Real Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9 Ideal and Real Solutions 2/26/2016 CHAPTER 9 IDEAL AND REAL SOLUTIONS • Raoult’s law: ideal solution • Henry’s law: real solution • Activity: correlation with chemical potential and chemical equilibrium Ideal Solution • Raoult’s law: The partial pressure (Pi) of each component in a solution is directly proportional to the vapor pressure of the corresponding pure substance (Pi*) and that the proportionality constant is the mole fraction (xi) of the component in the liquid • Ideal solution • any liquid that obeys Raoult’s law • In a binary liquid, A-A, A-B, and B-B interactions are equally strong 1 2/26/2016 Chemical Potential of a Component in the Gas and Solution Phases • If the liquid and vapor phases of a solution are in equilibrium • For a pure liquid, Ideal Solution • ∆ ∑ Similar to ideal gas mixing • ∆ ∑ 2 2/26/2016 Example 9.2 • An ideal solution is made from 5 mole of benzene and 3.25 mole of toluene. (a) Calculate Gmixing and Smixing at 298 K and 1 bar. (b) Is mixing a spontaneous process? ∆ ∆ Ideal Solution Model for Binary Solutions • Both components obey Rault’s law • Mole fractions in the vapor phase (yi) Benzene + DCE 3 2/26/2016 Ideal Solution Mole fraction in the vapor phase Variation of Total Pressure with x and y 4 2/26/2016 Average Composition (z) • , , , , ,, • In the liquid phase, • In the vapor phase, za x b yb x c yc Phase Rule • In a binary solution, F = C – p + 2 = 4 – p, as C = 2 5 2/26/2016 Example 9.3 • An ideal solution of 5 mole of benzene and 3.25 mole of toluene is placed in a piston and cylinder assembly. At 298 K, the vapor pressure of the pure substances are 96.4 torr for benzene and 28.9 torr for toluene. • a. The pressure above this solution is reduced from 760 torr. At what pressure does the vapor phase first appear? • b. What is the composition of the vapor at this point? Lever Rule • To calculate the relative amount of material in each of the two phases in a coexistence region 6 2/26/2016 Fractional Distillation (T – z diagram) Gibbs-Duhem Equation • The chemical potentials of the two components in a binary solution is not independent const T and P 7 2/26/2016 Colligative Properties • Freezing point depression (with nonvolatile solute) • Boiling point elevation Freezing Point Depression 8 2/26/2016 Boiling Point Elevation 9 2/26/2016 Osmotic Pressure () van’t Semipermeable Hoff membrane equation Implication of Osmotic Pressure Sea water contains 1.1 M NaCl, which means that it will require a pressure of at least 27 bar to reverse osmosis and obtain pure water. 10 2/26/2016 Real Solution • Deviation from Raoult’s law • Real solution: A-A, B-B and A-B interactions are distinctly different Real Solution • Vmixing and Hmixing can be positive or negative ∆ , , • Partial molar quantity (any extensive variable, U, H, S, A, G, etc) • partial molar volume 11 2/26/2016 Gibbs-Duhem Equation • Applicable to both real and ideal solutions Ideal Dilute Solution • In a real solution, just like in an ideal solution, but * • Activity • Activity coefficient: quantify the degree to which the solution is nonideal (similar to fugacity plays in real gas) 12 2/26/2016 Ideal dilute solution Henry’s Law • solvent follows Raoult’s law • solute is described by Henry’s law Raoult’s law Henry’s law constant 13 2/26/2016 Activity and Activity Coefficient • Raoult’s law standard state • Henry’s law standard state Colligative Properties of Ideal Dilute Solution • A useful way to determine the activity coefficient • Example 9.11: in 500 g of water, 24 g of a nonvolatile solute of MW 241 g/mol is dissolved. The observed freezing point depression is 0.359 °C. Calculate the activity coefficient of the solute. 14 2/26/2016 Chemical Equilibrium in Solution Henry’s law standard state for each component Binding Equilibrium (Adsorption) • Assuming a single binding site for the molecule, the average number of bound molecules per species 15 2/26/2016 Multiple Binding Sites • Independent site binding N binding sites Scatchard equation Scatchard plot 16.
Recommended publications
  • Pre Lab: Freezing Point Experiment 1) Define: Colligative Properties. 2
    Pre Lab: Freezing Point Experiment 1) Define: Colligative properties. 2) List four Colligative properties. 3) Define: Molal freezing point depression constant, Kf. 4) Does the value of Kf depend on the nature of ( solvent, or solute)?_________ 5) a) Show a freezing point of 6.00 °C on a cooling curve for a pure solvent. temperature time b) If the freezing point of a pure solvent is 6.00 °C, will the solvent which is contaminated with a soluble material have a freezing point (higher than, lower than, or same as) 6.00 °C ? Answer: _________. Explain:_______________________________________________________ c) Show a freezing point on the cooling curve for the above contaminated solvent. temperature time 6) Assume you had used a well calibrated thermometer to measure the freezing point of a solvent, can you tell from the cooling curve if the solvent is contaminated with soluble material?______ How can you tell? a) ____________________ b) _____________________ (Next page) 7) Show the freezing point on a cooling curve for a solvent contaminated with insoluble material. temperature time 8) What is the relationship between ∆T and molar mass of solute? The larger the value of ∆T, the (larger, or smaller) the molar mass of the solute? 9) If some insoluble material contaminated your solution after it had been prepared, how would this effect the measured ∆Tf and the calculated molar mass of solute? Explain: _______________________________________________________ 10) If some soluble material contaminated your solution after it had been prepared, how
    [Show full text]
  • Is Colonic Propionate Delivery a Novel Solution to Improve Metabolism and Inflammation in Overweight Or Obese Subjects?
    Commentary in IgG levels in IPE-treated subjects versus Is colonic propionate delivery a novel those receiving cellulose supplementa- tion. This interesting discovery is the Gut: first published as 10.1136/gutjnl-2019-318776 on 26 April 2019. Downloaded from solution to improve metabolism and first evidence in humans that promoting the delivery of propionate in the colon inflammation in overweight or may affect adaptive immunity. It is worth noting that previous preclinical and clin- obese subjects? ical data have shown that supplementation with inulin-type fructans was associated 1,2 with a lower inflammatory tone and a Patrice D Cani reinforcement of the gut barrier.7 8 Never- theless, it remains unknown if these effects Increased intake of dietary fibre has been was the lack of evidence that the observed are directly linked with the production of linked to beneficial impacts on health for effects were due to the presence of inulin propionate, changes in the proportion of decades. Strikingly, the exact mechanisms itself on IPE or the delivery of propionate the overall levels of SCFAs, or the pres- of action are not yet fully understood. into the colon. ence of any other bacterial metabolites. Among the different families of fibres, In GUT, Chambers and colleagues Alongside the changes in the levels prebiotics have gained attention mainly addressed this gap of knowledge and of SCFAs, plasma metabolome analysis because of their capacity to selectively expanded on their previous findings.6 For revealed that each of the supplementa- modulate the gut microbiota composition 42 days, they investigated the impact of tion periods was correlated with different 1 and promote health benefits.
    [Show full text]
  • Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes
    Chapter 4 Calculation of Standard Thermodynamic Properties of Aqueous Electrolytes and Non-Electrolytes Vladimir Majer Laboratoire de Thermodynamique des Solutions et des Polymères Université Blaise Pascal Clermont II / CNRS 63177 Aubière, France Josef Sedlbauer Department of Chemistry Technical University Liberec 46117 Liberec, Czech Republic Robert H. Wood Department of Chemistry and Biochemistry University of Delaware Newark, DE 19716, USA 4.1 Introduction Thermodynamic modeling is important for understanding and predicting phase and chemical equilibria in industrial and natural aqueous systems at elevated temperatures and pressures. Such systems contain a variety of organic and inorganic solutes ranging from apolar nonelectrolytes to strong electrolytes; temperature and pressure strongly affect speciation of solutes that are encountered in molecular or ionic forms, or as ion pairs or complexes. Properties related to the Gibbs energy, such as thermodynamic equilibrium constants of hydrothermal reactions and activity coefficients of aqueous species, are required for practical use by geologists, power-cycle chemists and process engineers. Derivative properties (enthalpy, heat capacity and volume), which can be obtained from calorimetric and volumetric experiments, are useful in extrapolations when calculating the Gibbs energy at conditions remote from ambient. They also sensitively indicate evolution in molecular interactions with changing temperature and pressure. In this context, models with a sound theoretical basis are indispensable, describing with a limited number of adjustable parameters all thermodynamic functions of an aqueous system over a wide range of temperature and pressure. In thermodynamics of hydrothermal solutions, the unsymmetric standard-state convention is generally used; in this case, the standard thermodynamic properties (STP) of a solute reflect its interaction with the solvent (water), and the excess properties, related to activity coefficients, correspond to solute-solute interactions.
    [Show full text]
  • Notation for States and Processes, Significance of the Word Standard in Chemical Thermodynamics, and Remarks on Commonly Tabulated Forms of Thermodynamic Functions
    Pure &Appl.Chem.., Vol.54, No.6, pp.1239—1250,1982. 0033—4545/82/061239—12$03.00/0 Printed in Great Britain. Pergamon Press Ltd. ©1982IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION COMMISSION ON THERMODYNAMICS* NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS (Recommendations 1981) (Appendix No. IV to Manual of Symbols and Terminology for Physicochemical Quantities and Units) Prepared for publication by J. D. COX, National Physical Laboratory, Teddington, UK with the assistance of a Task Group consisting of S. ANGUS, London; G. T. ARMSTRONG, Washington, DC; R. D. FREEMAN, Stiliwater, OK; M. LAFFITTE, Marseille; G. M. SCHNEIDER (Chairman), Bochum; G. SOMSEN, Amsterdam, (from Commission 1.2); and C. B. ALCOCK, Toronto; and P. W. GILLES, Lawrence, KS, (from Commission 11.3) *Membership of the Commission for 1979-81 was as follows: Chairman: M. LAFFITTE (France); Secretary: G. M. SCHNEIDER (FRG); Titular Members: S. ANGUS (UK); G. T. ARMSTRONG (USA); V. A. MEDVEDEV (USSR); Y. TAKAHASHI (Japan); I. WADSO (Sweden); W. ZIELENKIEWICZ (Poland); Associate Members: H. CHIHARA (Japan); J. F. COUNSELL (UK); M. DIAZ-PENA (Spain); P. FRANZOSINI (Italy); R. D. FREEMAN (USA); V. A. LEVITSKII (USSR); 0.SOMSEN (Netherlands); C. E. VANDERZEE (USA); National Representatives: J. PICK (Czechoslovakia); M. T. RATZSCH (GDR). NOTATION FOR STATES AND PROCESSES, SIGNIFICANCE OF THE WORD STANDARD IN CHEMICAL THERMODYNAMICS, AND REMARKS ON COMMONLY TABULATED FORMS OF THERMODYNAMIC FUNCTIONS SECTION 1. INTRODUCTION The main IUPAC Manual of symbols and terminology for physicochemical quantities and units (Ref.
    [Show full text]
  • The Lower Critical Solution Temperature (LCST) Transition
    Copyright by David Samuel Simmons 2009 The Dissertation Committee for David Samuel Simmons certifies that this is the approved version of the following dissertation: Phase and Conformational Behavior of LCST-Driven Stimuli Responsive Polymers Committee: ______________________________ Isaac Sanchez, Supervisor ______________________________ Nicholas Peppas ______________________________ Krishnendu Roy ______________________________ Venkat Ganesan ______________________________ Thomas Truskett Phase and Conformational Behavior of LCST-Driven Stimuli Responsive Polymers by David Samuel Simmons, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin December, 2009 To my grandfather, who made me an engineer before I knew the word and to my wife, Carey, for being my partner on my good days and bad. Acknowledgements I am extraordinarily fortunate in the support I have received on the path to this accomplishment. My adviser, Dr. Isaac Sanchez, has made this publication possible with his advice, support, and willingness to field my ideas at random times in the afternoon; he has my deep appreciation for his outstanding guidance. My thanks also go to the members of my Ph.D. committee for their valuable feedback in improving my research and exploring new directions. I am likewise grateful to the other members of Dr. Sanchez’ research group – Xiaoyan Wang, Yingying Jiang, Xiaochu Wang, and Frank Willmore – who have shared their ideas and provided valuable sounding boards for my mine. I would particularly like to express appreciation for Frank’s donation of his own post-graduation time in assisting my research.
    [Show full text]
  • Lab Colligative Properties Data Sheet Answers
    Lab Colligative Properties Data Sheet Answers outspanning:Rem remains hedogging: praising she his disclosed reunionists her tirelessly agrimony and semaphore dustily. Sober too purely? Wiatt demonetising Rhombohedral lissomly. Warren The answers coming up in both involve transformations of salt component of moles of salt flux is where appropriate. Experiment 4 Molar Mass by Freezing Point Depression. The colligative property and answer the colligative properties? Constant is what property set the solvent not the solute. Laboratory Manual An Atoms First Approach illuminate the various Chemistry Laboratory. Wipe the colligative property of solute concentration of in touch the following sensors and answer to its properties multiple choice worksheet. Experiment 2 Graphical Representation of Data and the Use all Excel. Investigation of local church alongside lab partners from one middle or high underneath The engaging. For dilute solutions under ideal conditions A new equal to 1 and. Colligative Properties Study Guide Answers Colligative properties study guide answers. Students will characterize the properties that describe solutions and the saliva of acids and. Do colligative properties lab data sheets, see this conclusion of how they answer. Weber State University. Adding a lab. Stir well in data sheet of colligative effects. Strong electrolytes are a colligative properties of data sheet provided to. If no ally is such a referred solutions lab 33 freezing point answers book that. Chemistry Colligative Properties Answer Key AdvisorNews. Which a property. B Answering about 5-6 questions on eLearning for in particular lab You please be. Colligative Properties Chp14 13 13-Freezing Points of Solutions - leave a copy of store Data company with the TA BEFORE leaving lab 1124 No labs 121.
    [Show full text]
  • Solution Is a Homogeneous Mixture of Two Or More Substances in Same Or Different Physical Phases. the Substances Forming The
    CLASS NOTES Class:12 Topic: Solutions Subject: Chemistry Solution is a homogeneous mixture of two or more substances in same or different physical phases. The substances forming the solution are called components of the solution. On the basis of number of components a solution of two components is called binary solution. Solute and Solvent In a binary solution, solvent is the component which is present in large quantity while the other component is known as solute. Classification of Solutions Solubility The maximum amount of a solute that can be dissolved in a given amount of solvent (generally 100 g) at a given temperature is termed as its solubility at that temperature. The solubility of a solute in a liquid depends upon the following factors: (i) Nature of the solute (ii) Nature of the solvent (iii) Temperature of the solution (iv) Pressure (in case of gases) Henry’s Law The most commonly used form of Henry’s law states “the partial pressure (P) of the gas in vapour phase is proportional to the mole fraction (x) of the gas in the solution” and is expressed as p = KH . x Greater the value of KH, higher the solubility of the gas. The value of KH decreases with increase in the temperature. Thus, aquatic species are more comfortable in cold water [more dissolved O2] rather than Warm water. Applications 1. In manufacture of soft drinks and soda water, CO2 is passed at high pressure to increase its solubility. 2. To minimise the painful effects (bends) accompanying the decompression of deep sea divers. O2 diluted with less soluble.
    [Show full text]
  • Chapter 9: Raoult's Law, Colligative Properties, Osmosis
    Winter 2013 Chem 254: Introductory Thermodynamics Chapter 9: Raoult’s Law, Colligative Properties, Osmosis ............................................................ 95 Ideal Solutions ........................................................................................................................... 95 Raoult’s Law .............................................................................................................................. 95 Colligative Properties ................................................................................................................ 97 Osmosis ..................................................................................................................................... 98 Final Review ................................................................................................................................ 101 Chapter 9: Raoult’s Law, Colligative Properties, Osmosis Ideal Solutions Ideal solutions include: - Very dilute solutions (no electrolyte/ions) - Mixtures of similar compounds (benzene + toluene) * Pure substance: Vapour Pressure P at particular T For a mixture in liquid phase * Pi x i P i Raoult’s Law, where xi is the mole fraction in the liquid phase This gives the partial vapour pressure by a volatile substance in a mixture In contrast to mole fraction in the gas phase yi Pi y i P total This gives the partial pressure of the gas xi , yi can have different values. Raoult’s Law Rationalization of Raoult’s Law Pure substance: Rvap AK evap where Rvap = rate of vaporization,
    [Show full text]
  • Exercise and Cellular Respiration Lab
    California State University of Bakersfield, Department of Chemistry Exercise and Cellular Respiration Lab Standards: MS-LS1-7 Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. Introduction: I. Background Information. Cellular respiration (see chemical reaction below) is a chemical reaction that occurs in your cells to create energy; when you are exercising your muscle cells are creating ATP to contract. Cellular respiration requires oxygen (which is breathed in) and creates carbon dioxide (which is breathed out). This lab will address how exercise (increased muscle activity) affects the rate of cellular respiration. You will measure 3 different indicators of cellular respiration: breathing rate, heart rate, and carbon dioxide production. You will measure these indicators at rest (with no exercise) and after 1 and 2 minutes of exercise. Breathing rate is measured in breaths per minute, heart rate in beats per minute, and carbon dioxide in the time it takes bromothymol blue to change color. Carbon dioxide production can be measured by breathing through a straw into a solution of bromothymol blue (BTB). BTB is an acid indicator; when it reacts with acid it turns from blue to yellow. When carbon dioxide reacts with water, a weak acid (carbonic acid) is formed (see chemical reaction below). The more carbon dioxide you breathe into the BTB solution, the faster it will change color to yellow. The purpose of this lab activity is to analyze the effect of exercise on cellular respiration. Background: I.
    [Show full text]
  • Δtb = M × Kb, Δtf = M × Kf
    8.1HW Colligative Properties.doc Colligative Properties of Solvents Use the Equations given in your notes to solve the Colligative Property Questions. ΔTb = m × Kb, ΔTf = m × Kf Freezing Boiling K K Solvent Formula Point f b Point (°C) (°C/m) (°C/m) (°C) Water H2O 0.000 100.000 1.858 0.521 Acetic acid HC2H3O2 16.60 118.5 3.59 3.08 Benzene C6H6 5.455 80.2 5.065 2.61 Camphor C10H16O 179.5 ... 40 ... Carbon disulfide CS2 ... 46.3 ... 2.40 Cyclohexane C6H12 6.55 80.74 20.0 2.79 Ethanol C2H5OH ... 78.3 ... 1.07 1. Which solvent’s freezing point is depressed the most by the addition of a solute? This is determined by the Freezing Point Depression constant, Kf. The substance with the highest value for Kf will be affected the most. This would be Camphor with a constant of 40. 2. Which solvent’s freezing point is depressed the least by the addition of a solute? By the same logic as above, the substance with the lowest value for Kf will be affected the least. This is water. Certainly the case could be made that Carbon disulfide and Ethanol are affected the least as they do not have a constant. 3. Which solvent’s boiling point is elevated the least by the addition of a solute? Water 4. Which solvent’s boiling point is elevated the most by the addition of a solute? Acetic Acid 5. How does Kf relate to Kb? Kf > Kb (fill in the blank) The freezing point constant is always greater.
    [Show full text]
  • Thermodynamics the Study of the Transformations of Energy from One Form Into Another
    Thermodynamics the study of the transformations of energy from one form into another First Law: Heat and Work are both forms of Energy. in any process, Energy can be changed from one form to another (including heat and work), but it is never created or distroyed: Conservation of Energy Second Law: Entropy is a measure of disorder; Entropy of an isolated system Increases in any spontaneous process. OR This law also predicts that the entropy of an isolated system always increases with time. Third Law: The entropy of a perfect crystal approaches zero as temperature approaches absolute zero. ©2010, 2008, 2005, 2002 by P. W. Atkins and L. L. Jones ©2010, 2008, 2005, 2002 by P. W. Atkins and L. L. Jones A Molecular Interlude: Internal Energy, U, from translation, rotation, vibration •Utranslation = 3/2 × nRT •Urotation = nRT (for linear molecules) or •Urotation = 3/2 × nRT (for nonlinear molecules) •At room temperature, the vibrational contribution is small (it is of course zero for monatomic gas at any temperature). At some high temperature, it is (3N-5)nR for linear and (3N-6)nR for nolinear molecules (N = number of atoms in the molecule. Enthalpy H = U + PV Enthalpy is a state function and at constant pressure: ∆H = ∆U + P∆V and ∆H = q At constant pressure, the change in enthalpy is equal to the heat released or absorbed by the system. Exothermic: ∆H < 0 Endothermic: ∆H > 0 Thermoneutral: ∆H = 0 Enthalpy of Physical Changes For phase transfers at constant pressure Vaporization: ∆Hvap = Hvapor – Hliquid Melting (fusion): ∆Hfus = Hliquid –
    [Show full text]
  • Dissociation Constants and Ph-Titration Curves at Constant Ionic Strength from Electrometric Titrations in Cells Without Liquid
    U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP1537 Part of Journal of Research of the N.ational Bureau of Standards, Volume 30, May 1943 DISSOCIATION CONSTANTS AND pH-TITRATION CURVES AT CONSTANT IONIC STRENGTH FROM ELECTRO­ METRIC TITRATIONS IN CELLS WITHOUT LIQUID JUNCTION : TITRATIONS OF FORMIC ACID AND ACETIC ACID By Roger G. Bates, Gerda L. Siegel, and S. F. Acree ABSTRACT An improved method for obtaining the titration curves of monobasic acids is outlined. The sample, 0.005 mole of the sodium salt of the weak acid, is dissolver! in 100 ml of a 0.05-m solution of sodium chloride and titrated electrometrically with an acid-salt mixture in a hydrogen-silver-chloride cell without liquid junction. The acid-salt mixture has the composition: nitric acid, 0.1 m; pot assium nitrate, 0.05 m; sodium chloride, 0.05 m. The titration therefore is performed in a. medium of constant chloride concentration and of practically unchanging ionic­ strength (1'=0.1) . The calculations of pH values and of dissociation constants from the emf values are outlined. The tit ration curves and dissociation constants of formic acid and of acetic acid at 25 0 C were obtained by this method. The pK values (negative logarithms of the dissociation constants) were found to be 3.742 and 4. 754, respectively. CONTENTS Page I . Tntroduction __ _____ ~ __ _______ . ______ __ ______ ____ ________________ 347 II. Discussion of the titrat ion metbod __ __ ___ ______ _______ ______ ______ _ 348 1. Ti t;at~on. clU,:es at constant ionic strength from cells without ltqUld JunctlOlL - - - _ - __ _ - __ __ ____ ____ _____ __ _____ ____ __ _ 349 2.
    [Show full text]