Triethylamine (Casrn 121-44-8) Administered by Inhalation to F344/N Rats and B6c3f1/N Mice

Total Page:16

File Type:pdf, Size:1020Kb

Triethylamine (Casrn 121-44-8) Administered by Inhalation to F344/N Rats and B6c3f1/N Mice NTP TECHNICAL REPORT ON THE OXICITY TUDIES OF T S TRIETHYLAMINE (CASRN 121-44-8) ADMINISTERED BY INHALATION TO F344/N RATS AND B6C3F1/N MICE NTP TOX 78 MARCH 2018 NTP Technical Report on the Toxicity Studies of Triethylamine (CASRN 121-44-8) Administered by Inhalation to F344/N Rats and B6C3F1/N Mice Toxicity Report 78 March 2018 National Toxicology Program Public Health Service U.S. Department of Health and Human Services ISSN: 2378-8992 Research Triangle Park, North Carolina, USA NOT FOR Review Draft Triethylamine, NTP TOX 78 Foreword The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Toxicity Study Report series began in 1991. The studies described in the Toxicity Study Report series are designed and conducted to characterize and evaluate the toxicologic potential of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure. The interpretive conclusions presented in the Toxicity Study Reports are based only on the results of these NTP studies. Extrapolation of these results to other species, including characterization of hazards and risks to humans, requires analyses beyond the intent of these reports. Selection per se is not an indicator of a substance’s toxic potential. The NTP conducts its studies in compliance with its laboratory health and safety guidelines and FDA Good Laboratory Practice Regulations and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use are in accordance with the Public Health Service Policy on Humane Care and Use of Animals. Studies are subjected to retrospective quality assurance audits before being presented for public review. NTP Toxicity Study Reports are indexed in the National Center for Biotechnology Information (NCBI) Bookshelf database and are available free of charge electronically on the NTP website (http://ntp.niehs.nih.gov). Additional information regarding this study may be requested through Central Data Management (CDM) at [email protected]. Toxicity data are available through NTP’s Chemical Effects in Biological Systems (CEBS) database: https://www.niehs.nih.gov/research/resources/database/cebs/index.cfm. ii Triethylamine, NTP TOX 78 Table of Contents Foreword ......................................................................................................................................... ii Tables ............................................................................................................................................. iv Figures............................................................................................................................................. v About This Report.......................................................................................................................... vi Peer Review ................................................................................................................................... ix Publication Details ...........................................................................................................................x Abstract .......................................................................................................................................... xi Introduction ......................................................................................................................................1 Chemical and Physical Properties ...............................................................................................1 Production, Use, and Human Exposure ......................................................................................1 Regulatory Status ........................................................................................................................2 Absorption, Distribution, Metabolism, Excretion, and Toxicokinetics ......................................2 Toxicity .......................................................................................................................................3 Experimental Animals .........................................................................................................3 Humans ................................................................................................................................4 Carcinogenicity ...........................................................................................................................4 Genetic Toxicity ..........................................................................................................................5 Study Rationale ...........................................................................................................................5 Materials and Methods .....................................................................................................................6 Procurement and Characterization of Triethylamine ..................................................................6 Vapor Generation and Exposure System ....................................................................................6 Vapor Concentration Monitoring ................................................................................................7 Chamber Atmosphere Characterization ......................................................................................7 Animal Welfare ...........................................................................................................................8 Two-week Studies .......................................................................................................................8 Three-month Studies ...................................................................................................................9 Statistical Methods ....................................................................................................................14 Calculation and Analysis of Lesion Incidences .................................................................14 Analysis of Continuous Variables .....................................................................................14 Quality Assurance Methods ......................................................................................................15 Genetic Toxicology ...................................................................................................................15 Bacterial Mutagenicity Test Protocol ................................................................................15 Mouse Peripheral Blood Micronucleus Test Protocol .......................................................15 Evaluation Protocol ............................................................................................................16 Results ............................................................................................................................................17 Rats ............................................................................................................................................17 Two-week Study ................................................................................................................17 Three-month Study ............................................................................................................21 Mice...........................................................................................................................................27 Two-week Study ................................................................................................................27 iii Triethylamine, NTP TOX 78 Three-month Study ............................................................................................................30 Genetic Toxicology ...................................................................................................................35 Discussion ......................................................................................................................................38 References ......................................................................................................................................42 Appendix A. Summary of Nonneoplastic Lesions in Rats and Mice ......................................... A-1 Appendix B. Genetic Toxicology ................................................................................................B-1 Appendix C. Clinical Pathology Results .....................................................................................C-1 Appendix
Recommended publications
  • Investigation of Condensed and Early Stage Gas Phase Hypergolic Reactions Jacob Daniel Dennis Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Fall 2014 Investigation of condensed and early stage gas phase hypergolic reactions Jacob Daniel Dennis Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Propulsion and Power Commons Recommended Citation Dennis, Jacob Daniel, "Investigation of condensed and early stage gas phase hypergolic reactions" (2014). Open Access Dissertations. 256. https://docs.lib.purdue.edu/open_access_dissertations/256 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. i INVESTIGATION OF CONDENSED AND EARLY STAGE GAS PHASE HYPERGOLIC REACTIONS A Dissertation Submitted to the Faculty of Purdue University by Jacob Daniel Dennis In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2014 Purdue University West Lafayette, Indiana ii To my parents, Jay and Susan Dennis, who have always pushed me to be the person they know I am capable of being. Also to my wife, Claresta Dennis, who not only tolerated me but suffered along with me throughout graduate school. I love you and am so proud of you! iii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor, Dr. Timothée Pourpoint, for guiding me over the past four years and helping me become the researcher that I am today. In addition I would like to thank the rest of my PhD Committee for the insight and guidance. I would also like to acknowledge the help provided by my fellow graduate students who spent time with me in the lab: Travis Kubal, Yair Solomon, Robb Janesheski, Jordan Forness, Jonathan Chrzanowski, Jared Willits, and Jason Gabl.
    [Show full text]
  • Analysis of Ammonia and Volatile Organic Amine Emissions in a Confined Poultry Facility
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2010 Analysis of Ammonia and Volatile Organic Amine Emissions in a Confined Poultry Facility Hanh Hong Thi Dinh Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Analytical Chemistry Commons Recommended Citation Dinh, Hanh Hong Thi, "Analysis of Ammonia and Volatile Organic Amine Emissions in a Confined Poultry Facility" (2010). All Graduate Theses and Dissertations. 598. https://digitalcommons.usu.edu/etd/598 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Copyright © Hanh Hong Thi Dinh 2010 All Right Reserved iii ABSTRACT Analysis of Ammonia and Volatile Organic Amine Emissions in a Confined Poultry Facility by Hanh Hong Thi Dinh, Master of Science Utah State University, 2010 Major Professor: Dr Robert S. Brown Department: Chemistry and Biochemistry The National Air Emission Monitoring Study (NAEMS) project was funded by the Agricultural Air Research Council (AARC) to evaluate agricultural emissions nationwide. Utah State University (USU) is conducting a parallel study on agricultural emissions at a Cache Valley poultry facility. As part of this parallel study, samples of animal feed, eggs and animal waste were collected weekly from three manure barns (designated: manure barn, barn 4 - manure belt and barn 5 - high rise) from May 2008 to November 2009. These samples were analyzed to determine ammonia content, total Kjeldahl nitrogen content and ammonia emission.
    [Show full text]
  • Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard
    Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude To cite this version: Juan-Carlos Lizardo-Huerta, Baptiste Sirjean, Laurent Verdier, René Fournet, Pierre-Alexandre Glaude. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas. Journal of Physical Chemistry A, American Chemical Society, 2017, 121 (17), pp.3254-3262. 10.1021/acs.jpca.7b01238. hal-01708219 HAL Id: hal-01708219 https://hal.archives-ouvertes.fr/hal-01708219 Submitted on 13 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Kinetic Modeling of the Thermal Destruction of Nitrogen Mustard Gas Juan-Carlos Lizardo-Huerta†, Baptiste Sirjean†, Laurent Verdier‡, René Fournet†, Pierre-Alexandre Glaude†,* †Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville BP 20451 54001 Nancy Cedex, France ‡DGA Maîtrise NRBC, Site du Bouchet, 5 rue Lavoisier, BP n°3, 91710 Vert le Petit, France *corresponding author: [email protected] Abstract The destruction of stockpiles or unexploded ammunitions of nitrogen mustard (tris (2- chloroethyl) amine, HN-3) requires the development of safe processes.
    [Show full text]
  • 2,2'-Iminodi(Ethylamine)
    2,2’-Iminodi(ethylamine) (CAS No: 111-40-0) Health-based Reassessment of Administrative Occupational Exposure Limits Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands No. 2000/15OSH/153 The Hague, October 27, 2005 Preferred citation: Health Council of the Netherlands: Committee on Updating of Occupational Exposure Limits. 2,2’-Iminodi(ethylamine); Health-based Reassessment of Administrative Occupational Exposure Limits. The Hague: Health Council of the Netherlands, 2005; 2000/15OSH/153. all rights reserved 1 Introduction The present document contains the assessment of the health hazard of 2,2’- iminodi(ethylamine), in this document referred to as DETA (diethylenetriamine), by the Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands. The first draft of this document was prepared by AAE Wibowo, Ph.D. (Coronel Institute, Academic Medical Centre, Amsterdam, the Netherlands). The evaluation of the toxicity of DETA has been based on the reviews by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (And94), the Swedish Criteria Group (Lun95), and the American Conference of Governmental Occupational Hygienists (ACGIH) (ACG96). Where relevant, the original publications were reviewed and evaluated as will be indicated in the text. In addition, in December 1997, literature was searched in the databases Medline, Chemical Abstracts, Embase (starting from 1966, 1970, and 1988, respectively), and HSELINE, NIOSHTIC, CISDOC, and MHIDAS (backwards from 1997) and Poltox (Toxline, Cambr Sc Abstr, FSTA) (backwards from 1994), using the following key words: diethylenetriamine, aminoethylethanediamine, diaminodiethylamine, iminobisethylamine, and 111- 40-0. In July 2000, the President of the Health Council released a draft of the document for public review.
    [Show full text]
  • Bio-Reducible Polyamines for Sirna Delivery
    Bio-Reducible Polyamines for siRNA Delivery by James Michael Serginson of the Department of Chemistry, Imperial College London Submitted in support of the degree of Doctor of Philosophy 1 Declaration of Authorship I do solemnly vow that this thesis is my own work. Where the work of others is referenced, it is clearly cited. 2 Abstract Even though siRNA shows great promise in the treatment of genetic disease, cancer and viral infection; the lack of a suitable delivery vector remains a barrier to clinical use. Currently, viral vectors lead the field in terms of efficacy but are generally regarded as prohibitively dangerous. Synthetic alternatives such as cationic polymers could overcome this problem. Previous work in the group found that small, cationic, disulfide-containing, cyclic polyamines – despite being non-polymeric – were useful as vectors for pDNA transfection; this work focuses on adapting the material for siRNA. A branched analogue of the cyclic compounds was prepared and the synthetic procedures investigated are discussed. The suitability of both compounds for siRNA delivery was studied in depth. Characterisation of their interactions with nucleic acids under various conditions was carried out using light-scattering techniques, gel electrophoresis and fluorescent dye exclusion assays. Results from these experiments were used to allow successful use of the materials as vectors and enable understanding of the mechanism of the template-driven polymerisation. Early data concerning the efficacy of the materials as an siRNA delivery system in vitro was obtained using A549 lung carcinoma cells as a model system with siRNAs targeting the production of the enzyme GAPDH. Both compounds showed a hint of successful siRNA Delivery but the data was not overwhelmingly conclusive.
    [Show full text]
  • Determination of Dimethylamine and Triethylamine in Hydrochloride
    Short Communications Determination of Dimethylamine and Triethylamine in Hydrochloride Salts of Drug Substances by Headspace Gas Chromatography using Dimethyl Sulphoxide- imidazole as Diluent J. GOPALAKRISHNAN* AND S. ASHA DEVI1 Piramal Enterprises Limited, Analytical Development Laboratory, 1, Nirlon complex, Off Western expressway, Goregaon (E), Mumbai-400 101, 1School of Biosciences and Technology, VIT University, Vellore-632 014, India Gopalakrishnan and Asha Devi: Determination of Amines in Drug by Headspace Gas Chromatography A simple, rapid, accurate and precise analytical method for determination of secondary and tertiary amines in hydrochloride salt form of drug substances in non-aqueous medium, which does not require any derivatization, was developed by headspace gas chromatography. Dimethylamine hydrochloride and triethylamine hydrochloride were analyzed in metformin hydrochloride. The sample was dissolved in a vial containing dimethyl sulphoxide and imidazole. The vials were incubated at 100°, for 20 min. The syringe temperature was maintained at 110°. DB624 column with 30 m×0.32 mm i.d., 1.8 µm film thickness was used. The injector and detector temperature were 200° and 250°, respectively. The analytical program used was carrier gas (nitrogen) flow rate: 1 ml/min; injected gas volume: 1.0 ml; split ratio: 1:10; oven temperature program: 40° for 10 min, followed by an increase up to 240° at 40°/min. The analytical method was validated with respect to precision, recovery, limit of detection and quantification and linearity. Key words: Aliphatic amines, dimethylamine, triethylamine, metformin hydrochloride, DMSO, imidazole, headspace gas chromatography Organic solvents are used in the synthesis of limit for unspecified impurities is 0.10%, i.e., 1000 pharmaceutical compounds and they must be controlled ppm[4].
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • The Chlorination of Certain Purinones with Phosphorus Oxychloride in the Presence of Tertiary Amines
    THE CHLORINATION OF CERTAIN PURINONES WI'fH PHOSPHORUS OXYCHLORIDE IN THE PRESENCE OF TERTIARY AMINES by ROLAND KENITH ROBINS \ ·' A THESIS subnltted to OREGON STATE, COLLEGE 1n partial fulfillment of the requirements tor the degree or DOCTOR OF PHILOSOPHY June 1952 lPlROYlEr Redacted for Privacy lrcfsor ff fmfrtrf In fir;r cf Ltr Redacted for Privacy Redacted for Privacy Uril5! of ofuArlr orltil.t Redacted for Privacy lha f 0mftrtr ililErof ftr ltbrrt, lr nrrrrrrlril ItDr0 try feltrrat fr Bct0nr AOKNO LEOOEMENT The author wishes to express his deepest gratitude to his wife, Lesaa, for her personal sacrifice and efforts ·which have contri buted greatly to the sucoeas of this work. The author wishes also to express thanks to Dr. Bert E. Christensen for h1s valuable assistance throughout the course of this research. TABLE OF CONTENTS Page Discussion • • • • • • • • • • • • • • • • • • • 1 Experimental • • • • • • • • • • • • • • • • • .. 13 Summary • • • • • • ., • • • • • • • • • • ,. • ., 28 Bibliography • • • • • • • • • • • • • • • • • • 29 LIST OF FIGURES Figure 1 • • • • • • • • • • • • • • • • • • • • 5 • Figure 2 • • • • • • ,. • • • • • • • •••••• 9 THE CHLORINATION OF CERTAIN PURINONES WITH PHOSPHORUS OXYCHLORIDE IN THE PRESENCE OF TERTIARY AMINES Since Baddiley and Topham (2, p.678) first re• ported using dimethylaniline in the chlorination or barbituric acid with phosphorus oxychloride, the use or a mixture or this tertiary amine and phosphorus oxy­ chloride has found extensive application in the prep­ aration ot numerous chloropyrimidinea . Because of the close chemical relationship of pyrimidine and purine derivatives, it aeemed quite logical that thia ·reaction could well be extended to the preparation of the rather inaooeaaible chloropur1nes. These chloropurinea could then serve as valuable inter­ mediates in the preparation or synthetic nucleoaidea I (7, pp.833-838).
    [Show full text]
  • Chemical Resistance Guide CHEMICAL RESISTANCE GUIDE
    Chemical Resistance Guide CHEMICAL RESISTANCE GUIDE This Chemical Resistance Guide incorporates three (800) 430-4110. North also offers ezGuide™,an Key to Degradation and Permeation Ratings types of information: interactive software program which is designed to electronically help you select the proper glove for E - Excellent Exposure has little or no effect. The glove retains its properties after extended exposure • Degradation (D) is a deleterious change in one use against specific chemicals. This "user friendly" G - Good Exposure has minor effect with long term exposure. Short term exposure has little or no effect or more of the glove’s physical properties. The guide walks you step-by-step through the process most obvious forms of degradation are the loss to determine what type of glove to wear and its F - Fair Exposure causes moderate degradation of the glove. Glove is still useful after short term of the glove’s strength and excessive swelling. permeation resistance to the selected contaminant. exposure but caution should be exercised with extended exposure Several published degradation lists (primarily Product features, benefits and ordering information P - Poor Short term exposure will result in moderate degradation to complete destruction “The General Chemical Resistance of Various of the suggested products also are included in the Elastomers” by the Los Angeles Rubber Group, program. ezGuide can be accessed from the North N/D Permeation was not detected during the test Inc.) were used to determine degradation. web site, www.northsafety.com or ordered I/D Insufficient data to make a recommendation • Breakthrough time (BT) is defined as the elapsed by e-mailing us at [email protected].
    [Show full text]
  • Export Controlled Chemicals, Including Mixtures and Compounds
    Export Controlled Chemicals, including mixtures and compounds **ALL High Explosives and their Precursors Are Export Controlled** Note that mixtures in which at least one of the chemicals listed below constitutes 30 percent or more of the weight of the mixture are also controlled. - 1,1-Diethylhydrazine nitrate (DEHN)/ 1,2-Diethylhydrazine nitrate (DEHN) (CAS 363453- 17-2) - 1,1-Dimethylhydrazinium azide (CAS 227955-52-4)/ - 1,2-Dimethylhydrazinium azide (CAS 299177-50-7) - 2 Nitrodiphenylamine (2-NDPA) - 2-Chloroethanol (CAS 107-07-3) - 2-hydroxyethylhydrazine nitrate (HEHN) - 3-Hydroxyl-1-methylpiperidine (CAS 3554-74-3) - 3-Quinuclidinol (CAS 1619-34-7) - 3-Quinuclidone (CAS 3731-38-2) - 3,6-dihydrazino tetrazine nitrate (DHTN), also referred to as 1,4-dihydrazine nitrate. - Allylhydrazine (CAS 7422-78-8) - Ammonium hydrogen fluoride (CAS 1341-49-7) - Ammonium nitrate (including fertilizers) containing more than 15% by weight ammonium nitrate - Arsenic trichloride (CAS 7784-34-1) - Benzilic acid (CAS 76-93-7) - Carboxy-terminated polybutadiene (including carboxyl-terminated polybutadiene) (CTPB) - Chemicals containing a phosphorus atom to which is bonded one methyl, ethyl, or propyl (normal or iso) group but not further carbon atoms. - Chlorine trifluoride (ClF3) - Chloropicrin: Trichloronitromethane (CAS 76-06-2) - Cyanogen chloride (CAS 506-77-4) - Di-isopropylamine (CAS 108-18-9) - Diethyl chlorophosphite (CAS 589–57–1) - Diethyl ethylphosphonate (CAS 78-38-6) - Diethyl methylphosphonate (CAS 683-08-9) - Diethyl methylphosphonite
    [Show full text]
  • Chemical Compatibility Storage Group
    CHEMICAL SEGREGATION Chemicals are to be segregated into 11 different categories depending on the compatibility of that chemical with other chemicals The Storage Groups are as follows: Group A – Compatible Organic Acids Group B – Compatible Pyrophoric & Water Reactive Materials Group C – Compatible Inorganic Bases Group D – Compatible Organic Acids Group E – Compatible Oxidizers including Peroxides Group F– Compatible Inorganic Acids not including Oxidizers or Combustible Group G – Not Intrinsically Reactive or Flammable or Combustible Group J* – Poison Compressed Gases Group K* – Compatible Explosive or other highly Unstable Material Group L – Non-Reactive Flammable and Combustible, including solvents Group X* – Incompatible with ALL other storage groups The following is a list of chemicals and their compatibility storage codes. This is not a complete list of chemicals, but is provided to give examples of each storage group: Storage Group A 94‐75‐7 2,4‐D (2,4‐Dichlorophenoxyacetic acid) 94‐82‐6 2,4‐DB 609-99-4 3,5-Dinitrosalicylic acid 64‐19‐7 Acetic acid (Flammable liquid @ 102°F avoid alcohols, Amines, ox agents see SDS) 631-61-8 Acetic acid, Ammonium salt (Ammonium acetate) 108-24-7 Acetic anhydride (Flammable liquid @102°F avoid alcohols see SDS) 79‐10‐7 Acrylic acid Peroxide Former 65‐85‐0 Benzoic acid 98‐07‐7 Benzotrichloride 98‐88‐4 Benzoyl chloride 107-92-6 Butyric Acid 115‐28‐6 Chlorendic acid 79‐11‐8 Chloroacetic acid 627‐11‐2 Chloroethyl chloroformate 77‐92‐9 Citric acid 5949-29-1 Citric acid monohydrate 57-00-1 Creatine 20624-25-3
    [Show full text]
  • Verification of Methods for Selected Chemical Warfare Agents (Cwas)
    EPA/600/R-12/653 | January 2013 | www.epa.gov/ord Verifi cation of Methods for Selected Chemical Warfare Agents (CWAs) Offi ce of Research and Development National Homeland Security Research Center Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. U.S. Environmental Protection Agency (EPA) funded and collaborated in this research under Interagency Agreement DW-89-92328201 with the U. S. Department of Energy (DOE). It has been reviewed by EPA but does not necessarily reflect EPA’s views. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. Auspices Statement This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344; the Lawrence Livermore National Laboratory report number is LLNL-TR-583012. The research team was comprised of Heather Mulcahy, Roald Leif, Edmund Salazar, and Carolyn Koester.
    [Show full text]