Equilibrium Constants for the Formation of Silver
Total Page:16
File Type:pdf, Size:1020Kb
EQUILIBRIUM CONSTANTS FOR THE FORMATION OF SILVER AMMINES IN ETHANOL-WATER MIXTURES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Charles Thomas Anderson, A.B ****** The Ohio State University Approved by* Adviser Department of Chemistry .•■--•.sia-ji • c--.\'--~t ' -.- ■?-..-_ _ _ _ _ __ ACKNOWLEDGMENT I -wish to express my deep appreciation to my preoeptor. Professor Prank Verhoek, for suggesting this problem, and for his advice and encouragement during the course of the work. 1 also wish to thank the Cincinnati Chemical Works for providing a fellowship under which much of this work was done. ii PREFACE This dissertation is & report of experimental studies on the equilibrium constants of a number of silver ammine complexes in ethanol-water solution, with the purpose of examining the relation ship between the stabilities of these complexes and the basio strengths and structures of the amines. Formation constants of the complex silver ions and dissociation constants of the amines were obtained at 25°C in 50 mole % ethanol-water mixtures from pH measurements of solutions containing known amounts of silver ion, acid, amine and neutral salt. The glass eleotrode used was calibrated on solutions for which the pH had been determined by potentiometric measurements with hydrogen electrodes and by spectrophotometric measurements using an indicator. - iii - TABLE OF CONTENTS ACKNOWLEDGMENT ....................................... ii PREFACE............................................... iii LIST OF T A B L E S ......................................... vi LIST OF ILLUSTRATIONS................................... ix LIST OF AMINES (ALPHABETICAL).......................... x LIST OF AMINES (BY NUMBER SYMBOL)........................ xi I. INTRODUCTION........................................ 1 A* The Electronic Theory of Acids and Bases* ***** 3 B. Silver Ion as a Reference Acid. ......... 7 C. The Bjerrum Method for Studying Complex Formation • 11 D. Calculation of the Consecutive Formation Constants 15 E. Use of the Glass Electrode in 50 mole % Ethanol- Water. 19 F. Scope of the Work * ................ •»...*• 23 II. EXPERIMENTAL.......................................... 25 A* Glass Electrode Measurements........... 25 B. Hydrogen Electrode Measurements ................. 31 C* Spectrophotometric Measurements .......... 32 D. Materials ......... 33 III. RESULTS................................................ 36 A. Acid Dissociation Constants of the Amines ..... 36 B. Formation Constants of the Silver Ammines ....... 39 - iv - - V - IV. DISCUSSION........................................... 44 A. Acid Dissociation Constants of theAmines .... 44 B. Silver Amndne Complexes...................... 48 C. The pH Scale in 50 mole % Ethanol-Water....... 61 1. Results of Potentiometrio Measurements. 61 2. Results of Potent!ometric Measurements. 64 3. Pinal Value of pH Meter Correction........... 65 V. SUMMARY............................................... 72 VI. SUGGESTIONS FOR FUTURE WORK............................ 75 VII. A P P E N D I X ............................................. 77 BIBLIOGRAPHY........................................ 122 AUTOBIOGRAPHY................. ..................... 125 LIST OF TABLES TABLE PAGE I The Stabilities of Complex Silver Annuities........... 10 XI The Acid Dissociation Constants of Amines at 25°C in SO mole % Ethanol-Water • . • • . ............... 38 III The Consecutive Formation Constants and Complexity Constants of Silver Ammines at 25°C in 50 mole % Ethanol-Water • . ...................... 42 IV Comparison of the Relative Acid Strengths of Substitu ted Ammonium Ions in Water and in 50 mole % Ethanol- Water ...................... 45 V Comparison of Complexity Constants and Successive Formation Constants Obtained in this Study with Those of Other Investigators. .................... 50 VI Potentiometrie Measurements for Calibration of the Glass Electrode............. .............. 62 VII pH Values of Hydrochloric Aoid Solutions in 50 mole % Ethanol-Water Containing 0.525 M LiNOg. ...... 64 VIII Spectrophotometric Measurements for Calibration of the Glass Electrode.......................... 65 IX Log Ujj as a Function of Mixture Composition and Eleo- trolyte Concentration (Data of Van Uitert and Haas) 67 X Optical Densities of Hydrochloric Acid Solutions and Quinoline Buffer 1 Using First Thymol Blue Solution 78 XT Optical Densities of Hydrochloric Acid Solutions and Quinoline Buffers 2 and 3 Using Second Thymol Blue Solution . ........... ........... 78 XII Aoid Dissociation Constant of 2,6-Xylidine ...... 79 XIII Acid Dissociation Constant of Aniline. ........ 79 XIV Acid Dissociation Constant of Ethanolamine...... 80 XV Acid Dissociation Constant of t-Octylamine ... 80 XVI Acid Dissociation Constant of t-Butylamine ...... 81 - vi - - vii - TABLE PAGE XVTT Aoid Dissooiation Constant of p-Anisidine ........... 81 XVIII Aoid Dissociation Constant of Morpholine. ......... 82 XIX Acid Dissociation Constant of Di-sec-butylamina .... 82 XX Aoid Dissooiation Constant of Di-n-butylamina ..... 83 XXI Acid Dissociation Constant of Decahydroquinoline. 83 XXLI Acid Dissociation Constant of Diethylamina........... 84 XXIII Acid Dissociation Constant of Dibenzylamlne ...... 84 XXIV Aoid Dissociation Constant of Diethanolamine........ 85 XXV Aoid Dissooiation Constant of Quinoline ........ 85 XXVI Acid Dissociation Constant of Pyridine.............. 86 XXVII Acid Dissociation Constant of N-ethyimorpholine .... 86 XXVTII Acid Dissociation Constant of Tri-n-butylamina....... 87 XXIX Acid Dissooiation Constant of Triethylamina......... 87 XXX Acid Dissociation Constant of Triethanolamine ..... 88 XXXI Acid Dissociation Constant of Methyl-diethanolamine • . 88 XXXII Acid Dissooiation Constant of Diethyl-ethanolamine. 89 XXXIII Aoid Dissociation Constant of Diethyl-o-toluidine . 89 XXXIV Acid Dissooiation Constant of Diethyl-p-toluidine . 90 XXXV Acid Dissociation Constant of N-ethylpiperidine .... 90 XXXVI 2,6-Xylidine - Silver Ion System. ........... 91 XXXVII Aniline - Silver Ion System....................... 92 XXXVIII Ethanolamine - Silver Ion System ........... 93 XXXIX t-Octylamine - Silver Ion System ........... 94 XL t-Butylamine - Silver Ion System ................ 95 - Tiii - TABLE PAGE X U Morpholine - Silver Ion System.............. 96 XIII Di-sec-butylamina - Silver Ion System ........... 97 XUII Di-n-butylamine - Silver Ion System 98 TCT.TV Decahydroquinoline - Silver Ion System. ......... 99 XLV Diethylamine - Silver Ion System. ........ 100 XLYT Dibenzylamina - Silver Ion System .................. 101 XLVTI Diethanolamine - Silver Ion System............ 102 XLVIII Quinoline - Silver Ion System .................. 103 TLTX Pyridine - Silver Ion System................104 L N-ethylmorpholine - Silver Ion System .............. 105 U Tri-n-butylamine - Silver Ion System......... 106 LTI Triethylamine - Silver Ion S y s t e m ............ ..... 107 LIII Triethanolamine - Silver Ion System .......... 108 LTV Methyl-diethanolamine - Silver Ion System ....109 LV Diethyl-ethanolamine - Silver Ion System. ....... 110 LVI Diethyl-o-toluidine - Silver Ion System ..... Ill LIST OF ILLUSTRATIONS FIGURE PAGE 1 Glass eleotrode apparatus. ....................... • • 26 2 Calomel eleotrode apparatus.......................... 27 3 pKin 50 mole % ethanol-water vs. pK^ in v&ter. .. 46 4 Silver ammines in 50 mole % ethanol-water* log Kt, vs. at 25°C. 52 5 Silver ammines in 50 mole % ethanol-water* log k^ vs. pK^H at 25°C ...................... 57 6 Silver ammines in 50 mole % ethanol-water* log k^ vs. log kg at 25°C ...................... 59 7 Silver ammine formation ourves* t-butylamine, di-n-butylamine, tri-n-butylamine ............... 112 8 Silver ammine formation curves* ethanolamine, diethanolamine, triethanolamine ......... ..... 113 9 Silver ammine formation ourves* aniline, di-sec-butylamine, quinoline. ............ 114 10 Silver ammine formation curves* 2,6-xylidine, dibenzylamine, pyridine .......................... 115 11 Silver ammine formation curves* morpholine, N-ethylmorpholine .................... 116 12 Silver ammine formation curves: decahydroquinoline, diethyl-ethanolamine. ....................... 117 13 Silver ammine formation curves* t-octylamine tz*ie thy lamine ...... .............. 118 14 Silver ammine formation curves* diethylamine, methyl-diethanolamine............................ 119 15 Spectrophotometric measurements on hydrochloric acid solutions using first thymol blue solution. ..... 120 16 Spectrophotometric measurements on hydrochloric acid solutions using second thymol blue solution ..... 121 - ix - LIST OF AMINES (Alphabetical) Amine No. Aniline 2 p-Anisidine 6 t-Bufcylamine 5 Deoahydroquinoline 10 Dibensylamine 12 Di-n-butylami ne 9 Di - se c-but y 1 ami ne 8 Di eth&nolami ne 13 Diethylamine 11 Di et hy 1-et hano 1 ami ne 21 Diet hy 1 -o-t olui dine 22 Diethy 1—p-toluidine 23 Ethanolamine 3 N-et hy lmorph o li ne 16 N-ethylpiperidine 24 Methy 1-di et hano lami ne 20 Morpholine 7 t-Octy lamine 4 Pyridine 15 Quinoline 14 Tri-n-butylamine 17 Tri ethanolamine 19 Trie thy land, ne 18 2 ,6-Zylidine 1 - x - LIST OF AMINES (By number symbol) No* Amine 1 2,6-Xylidine 2 Aniline 3 Ethanolamine 4 t-Octylamine 5 t -But y land ne 6 p-Ani si dine 7 Morpholine 8 Di-seo-buty lamine 9 Di-n-but ylandne 10 Deoahydroquinoline 11 Diethylamine 12 Dibenzy land ne 13 Diethanolamine 14 Quinoline 15 Pyridine