Table E-1. List of Aeds Included in Analyses As Time-Varying Covariate

Total Page:16

File Type:pdf, Size:1020Kb

Table E-1. List of Aeds Included in Analyses As Time-Varying Covariate Table e-1. List of AEDs included in analyses as time-varying covariate Generic Drug Names Antiepileptic Drugs Acetazolamide, Carbamazepine, Clobazam, Clonazepam, Diazepam, Divalproex Sodium, Eslicarbazepine, Ethosuximide, Ethotoin, Felbamate, Gabapentin, Lacosamide, Lamotrigine, Levetiracetam, Mesuximide, Oxcarbazepine, Perampanel, Phenobarbital, Phenytoin, Pregabalin, Primidone, Rufinamide, Tiagabine, Topiramate,Valproate, Vigabatrin, Zonisamide Table e-2. Group Comparisons ADHD Patients vs ADHD Patients Non-ADHD Controls Controls OR (95% CI) Overall N with % with Overall N with % with N Seizures Seizures N Seizures Seizures Male 474,742 8,725 1.84 474,742 3,793 0.80 2.33 (2.24, 2.42) Female 327,089 6,752 2.06 327,089 2,958 0.90 2.31 (2.22, 2.42) Medicated vs Never Medicated at Least Once Never Medicated Medicated OR (95% CI) Overall N with % with Overall N with % with N Seizures Seizures N Seizures Seizures Male 204,448 2,950 1.44 270,294 5,775 2.14 0.63 (0.60, 0.67) Female 177,253 2,881 1.63 149,836 3,871 2.58 0.61 (0.57, 0.64) ADHD medicated vs Medicated at Least Non-ADHD Controls Once Controls OR (95% CI) Overall N with % with Overall N with % with N Seizures Seizures N Seizures Seizures Male 204,448 2,950 1.44 204,448 1,755 0.86 1.69 (1.59, 1.80) Female 177,253 2,881 1.63 177,253 1,798 1.01 1.61 (1.52, 1.71) Note. Cases were individuals from the included ADHD patient cohort who were at least 5 years old and following a period of 1 year in the data without any treatment. Controls were matched on age in years at first enrollment, sex, calendar year of first enrollment, and months of enrollment with prescription coverage. ORs reflect comparisons made on different seizure events during enrollment. ADHD = attention-deficit hyperactivity disorder. OR = odds ratio. CI = confidence interval. Table e-3. Adjusted Concurrent Within-Individual Associations between AED Medication and Seizures Patients Seizures Cohort (Within Only) OR (95% CI) (N) (N) Any prior seizure 9,739 2,890 1.52 (1.39, 1.67) Stimulant only 801,838 5,427 1.52 (1.39, 1.67) 1-month extended 801,838 5,427 1.52 (1.39, 1.67) ER only 801,838 3,539 1.50 (1.34, 1.67) Men only 474,744 3,105 1.53 (1.35, 1.73) Women only 327,094 2,322 1.51 (1.31, 1.74) Age group 5-6 81,089 873 1.97 (0.73, 1.23) 7-12 223,045 1,345 1.43 (1.18, 1.74) 13-17 130,535 1,156 1.66 (1.37, 2.01) 18-25 144,115 910 1.20 (0.97, 1.50) 26-35 78,188 396 1.66 (1.20, 2.31) 36-45 73,491 374 1.45 (1.01, 2.10) 4 6+ 71,375 373 1.31 (0.91, 3.99) Note. Within-individual models control for time since last seizure event and ADHD prescription. AED = antiepileptic drug. ADHD = attention-deficit hyperactivity disorder. OR = odds ratio. CI = confidence interval. Table e-4. Adjusted Long-Term Cumulative and Time Interval Within-Individual Associations between AED Medication and Seizures Patients Seizures Cohort (Within Only) OR (95% CI) (N) (N) Cumulative Duration Any prior seizure 3,480 805 1.26 (0.95, 1.66) 3 years 193,612 1,246 1.44 (1.19, 1.74) Stimulant medication only 305,327 1,981 1.54 (1.32, 1.79) ER only 305,327 1,403 1.40 (1.74, 1.67) Men only 184,172 1,154 1.82 (1.49, 2.22) Women only 121,155 827 1.21 (0.95, 1.53) Time Interval 3 years 193,612 1,246 1.45 (1.19, 1.74) 2 years 305,327 1,981 1.25 (0.95, 1.65) Note. Adjusted models adjust for current and long-term ADHD medication status and time since last seizure event. Cumulative associations are the odds of events predicted by the cumulative number of months medicated during the two or three years prior. Interval associations are the odds of events predicted by medication status two or three years prior. AED = antiepileptic drug. ADHD = attention-deficit hyperactivity disorder. OR = odds ratio. CI = confidence interval. .
Recommended publications
  • Considerations in Perioperative Assessment of Valproic Acid Coagulopathy Claude Abdallah George Washington University
    Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Anesthesiology and Critical Care Medicine Faculty Anesthesiology and Critical Care Medicine Publications 1-2014 Considerations in perioperative assessment of valproic acid coagulopathy Claude Abdallah George Washington University Follow this and additional works at: http://hsrc.himmelfarb.gwu.edu/smhs_anesth_facpubs Part of the Anesthesia and Analgesia Commons APA Citation Abdallah, C. (2014). Considerations in perioperative assessment of valproic acid coagulopathy. Journal of Anaesthesiology Clinical Pharmacology, Volume 30, Issue 1 (). http://dx.doi.org/10.4103/0970-9185.125685 This Journal Article is brought to you for free and open access by the Anesthesiology and Critical Care Medicine at Health Sciences Research Commons. It has been accepted for inclusion in Anesthesiology and Critical Care Medicine Faculty Publications by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. [Downloaded free from http://www.joacp.org on Tuesday, February 25, 2014, IP: 128.164.86.61] || Click here to download free Android application for this journal Revv iew Article Considerations in perioperative assessment of valproic acid coagulopathy Claude Abdallah Department of Anesthesiology, Children’s National Medical Center, The George Washington University Medical Center, NW Washington, DC, USA Abstract Valproic acid (VPA) is one of the widely prescribed antiepileptic drugs in children with multiple indications. VPA-induced coagulopathy may occur and constitute a pharmacological and practical challenge affecting pre-operative evaluation and management of patients receiving VPA therapy. This review summarizes the different studies documenting the incidence, severity and available recommendations related to this adverse effect.
    [Show full text]
  • In Silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction
    In silico Methods for Drug Repositioning and Drug-Drug Interaction Prediction Pathima Nusrath Hameed ORCID: 0000-0002-8118-9823 Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering THE UNIVERSITY OF MELBOURNE May 2018 Copyright © 2018 Pathima Nusrath Hameed All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the author. Abstract Drug repositioning and drug-drug interaction (DDI) prediction are two fundamental ap- plications having a large impact on drug development and clinical care. Drug reposi- tioning aims to identify new uses for existing drugs. Moreover, understanding harmful DDIs is essential to enhance the effects of clinical care. Exploring both therapeutic uses and adverse effects of drugs or a pair of drugs have significant benefits in pharmacology. The use of computational methods to support drug repositioning and DDI prediction en- able improvements in the speed of drug development compared to in vivo and in vitro methods. This thesis investigates the consequences of employing a representative training sam- ple in achieving better performance for DDI classification. The Positive-Unlabeled Learn- ing method introduced in this thesis aims to employ representative positives as well as reliable negatives to train the binary classifier for inferring potential DDIs. Moreover, it explores the importance of a finer-grained similarity metric to represent the pairwise drug similarities. Drug repositioning can be approached by new indication detection. In this study, Anatomical Therapeutic Chemical (ATC) classification is used as the primary source to determine the indications/therapeutic uses of drugs for drug repositioning.
    [Show full text]
  • Therapeutic Class Overview Anticonvulsants
    Therapeutic Class Overview Anticonvulsants INTRODUCTION Epilepsy is a disease of the brain defined by any of the following (Fisher et al 2014): ○ At least 2 unprovoked (or reflex) seizures occurring > 24 hours apart; ○ 1 unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after 2 unprovoked seizures, occurring over the next 10 years; ○ Diagnosis of an epilepsy syndrome. Types of seizures include generalized seizures, focal (partial) seizures, and status epilepticus (Centers for Disease Control and Prevention [CDC] 2018, Epilepsy Foundation 2016). ○ Generalized seizures affect both sides of the brain and include: . Tonic-clonic (grand mal): begin with stiffening of the limbs, followed by jerking of the limbs and face . Myoclonic: characterized by rapid, brief contractions of body muscles, usually on both sides of the body at the same time . Atonic: characterized by abrupt loss of muscle tone; they are also called drop attacks or akinetic seizures and can result in injury due to falls . Absence (petit mal): characterized by brief lapses of awareness, sometimes with staring, that begin and end abruptly; they are more common in children than adults and may be accompanied by brief myoclonic jerking of the eyelids or facial muscles, a loss of muscle tone, or automatisms. ○ Focal seizures are located in just 1 area of the brain and include: . Simple: affect a small part of the brain; can affect movement, sensations, and emotion, without a loss of consciousness . Complex: affect a larger area of the brain than simple focal seizures and the patient loses awareness; episodes typically begin with a blank stare, followed by chewing movements, picking at or fumbling with clothing, mumbling, and performing repeated unorganized movements or wandering; they may also be called “temporal lobe epilepsy” or “psychomotor epilepsy” .
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
    US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety.
    [Show full text]
  • Dialysis of Drugs Source Documents Last Updated September 17, 2012
    Dialysis of Drugs Source Documents Last updated September 17, 2012 Note: Year indicates date of Dialysis of Drugs edition. Abacavir Izzedine H, et al. Pharmacokinetics of abacavir in HIV-1-infected patients with impaired renal function. Nephron 2001; 89:62-67. (2002) Abatacept Orencia prescribing information (2007) Abiraterone acetate Zytiga prescribing information (2012) Acenocoumarol Sintrom prescribing information (2005) Acetylcysteine Soldini D, et al. Pharmacokinetics of N-acetylcysteine following repeated intravenous infusion in haemodialysis patients. Eur J Clin Pharmacol 2005; 60:859-864. (2006) Acid colloidal hydrocolloid Flamigel package insert (2012) Acitretin Stuck AE, et al. Pharmacokinetics of acitretin and its 13-cis metabolite in patients on haemodialysis. Br J Clin Pharmacol. 1989; 27:301-4. (2004) Aclidinium bromide Tudorza PI (2013) Adalimumab Humira prescribing information (2005) Adefovir Hepsera prescribing information (2004) Professional services information from company (2004) Aflibercept Eylea package information (2013) Agalsidase alfa and beta (see galactosidase) Replagal product information from FDA web site (2006) Kosch M, et al. Enzyme replacement therapy administered during hemodialysis in patients with Fabry disease. Kidney Int 2004; 66:1279-1282. (2005) Pastores GM, et al. Safety and pharmacokinetics of agalsidase alfa in patients with Fabry disease and end-stage renal disease. Nephrol Dial Transplant 2007; 22:1920-1925. (2008) Fabrazyme prescribing information (2008) Replagal product information from European web site (2008) Agomelatine Valdoxan PI (2012) Albinterferon Alfa-2b Serra DB, et al. Single-Dose Pharmacokinetics, Safety, and Tolerability of Albinterferon 1 Alfa-2b in Subjects with End-Stage Renal Disease on Hemodialysis Compared to Those in Matched Healthy Volunteers. Antimicrob Agents Chemother. 2011;55:473-7.
    [Show full text]
  • Methsuximide in Intractable Epilepsies in Childhood
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 2001; 10: 120–124 doi:10.1053/seiz.2000.0467, available online at http://www.idealibrary.com on Effective and safe but forgotten: methsuximide in intractable epilepsies in childhood † ‡ § † MATTHIAS SIGLER , HANS MICHAEL STRASSBURG & HANS ERICH BOENIGK ∗ † Pediatric Hospital Kidron, Bethel Epilepsy Centre, Germany; ‡Department of Pediatric Cardiology, Aachen University of Technology, Germany; §Department of Pediatrics, University of Wuerzburg, Germany Correspondence to: Matthias Sigler MD, Department of Pediatric Cardiology, Aachen University of Technology, D-52057 Aachen, Germany. E-mail: [email protected] The efficacy and safety of methsuximide (MSM) was evaluated in children with intractable epilepsies in a prospective uncon- trolled study. MSM was added to the therapeutic regimen of 112 children with intractable epilepsy under inpatient conditions, all of whom were therapeutically refractory to various first-line antiepileptic drugs (AED) or combinations of other AED. Titration of MSM was performed following a uniform protocol. Administration of MSM resulted in a 50% or greater reduction in seizure frequency in 40 patients after a short-term obser- vation period (mean 9.1 weeks). After a mean of 3.7 years, the rate of seizures and side effects were re-evaluated in 39 patients who were still receiving MSM as part of their antiepileptic regimen. Twenty two of these patients derived long-term bene- fit from MSM. In patients with good seizure control, fasting plasma levels of N-desmethylmethsuximide, the principal active 1 1 metabolite of MSM, were 25.3–44.7 mg l− (mean 36.0 mg l− ).
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis With
    University of Rhode Island DigitalCommons@URI Pharmacy Practice Faculty Publications Pharmacy Practice 2018 Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis with Antiepileptic Drugs: An Analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) Eric P. Borrelli University of Rhode Island, [email protected] Erica Y. Lee University of Rhode Island SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://digitalcommons.uri.edu/php_facpubs The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits oy u. This is a pre-publication author manuscript of the final, published article. Terms of Use This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use. Citation/Publisher Attribution Borrelli EP, Lee EY, Descoteaux AM, Kogut SJ, Caffrey AR. Stevens‐Johnson syndrome and toxic epidermal necrolysis with antiepileptic drugs: An analysis of the US Food and Drug Administration Adverse Event Reporting System. Epilepsia. 2018;00:1–7. https://doi.org/10.1111/epi.14591 Available at: https://doi.org/10.1111/epi.14591 This Article is brought to you for free and open access by the Pharmacy Practice at DigitalCommons@URI. It has been accepted for inclusion in Pharmacy Practice Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Eric P. Borrelli, Erica Y. Lee, Andrew M. Descoteaux, Stephen Jon Kogut, and Aisling R. Caffrey This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/php_facpubs/124 Title: Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis with Antiepileptic Drugs: An Analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) Authors: Eric P.
    [Show full text]
  • "2-Oxo-1-Pyrrolidine Derivative and Its Pharmaceutical Uses"
    (19) & (11) EP 1 452 524 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 207/27 (2006.01) A61K 31/4015 (2006.01) 14.10.2009 Bulletin 2009/42 A61P 25/08 (2006.01) (21) Application number: 04007878.4 (22) Date of filing: 21.02.2001 (54) "2-oxo-1-pyrrolidine derivative and its pharmaceutical uses" "2-Oxo-1-Pyrrolidinderivate und ihre pharmazeutische Verwendung" "Dérivé de 2-oxo-1-pyrrolidine et ses applications pharmaceutique" (84) Designated Contracting States: • Talaga, Patrice AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU 1170 Watermael-Boitsfort (BE) MC NL PT SE TR (74) Representative: UCB (30) Priority: 23.02.2000 GB 0004297 Intellectual Property c/o UCB S.A. (43) Date of publication of application: Intellectual Property Department 01.09.2004 Bulletin 2004/36 Allée de la Recherche 60 1070 Brussels (BE) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: (56) References cited: 01925354.1 / 1 265 862 WO-A-99/13911 GB-A- 1 309 692 (73) Proprietor: UCB Pharma, S.A. • PROUS: "LEVETIRACETAM" DRUGS OF THE 1170 Brussels (BE) FUTURE, BARCELONA, ES, vol. 19, no. 2, 1994, pages 111-113, XP000908882 ISSN: 0377-8282 (72) Inventors: • FISCHER W ET AL: "Die Wirksamkeit von • Differding, Edmond Piracetam, Meclofenoxat und Vinpocetin in 1348 Ottignies-Louvain-La-Neuve (BE) verschiedenen Krampfmodellen bei der Maus" • Kenda, Benoît PHARMAZIE, VEB VERLAG VOLK UND 5080 Emines (BE) GESUNDHEIT. BERLIN, DD, vol. 46, no.
    [Show full text]
  • Drugs Affecting the Central Nervous System
    Drugs affecting the central nervous system 15. Antiepileptic drugs (AEDs) Epilepsy is caused by the disturbance of the functions of the CNS. Although epileptic seizures have different symptoms, all of them involve the enhanced electric charge of a certain group of central neurons which is spontaneously discharged during the seizure. The instability of the cell membrane potential is responsible for this spontaneous discharge. This instability may result from: increased concentration of stimulating neurotransmitters as compared to inhibiting neurotransmitters decreased membrane potential caused by the disturbance of the level of electrolytes in cells and/or the disturbance of the function of the Na+/K+ pump when energy is insufficient. 2 Mutations in sodium and potassium channels are most common, because they give rise to hyperexcitability and burst firing. Mutations in the sodium channel subunits gene have been associated with - in SCN2A1; benign familial neonatal epilepsy - in SCN1A; severe myoclonic epilepsy of infancy - in SCN1A and SCN1B; generalized epilepsy with febrile seizures The potassium channel genes KCNQ2 and KCNQ3 are implicated in some cases of benign familial neonatal epilepsy. Mutations of chloride channels CLCN2 gene have been found to be altered in several cases of classical idiopathic generalized epilepsy suptypes: child-epilepsy and epilepsy with grand mal on awakening. Mutations of calcium channel subunits have been identified in juvenile absence epilepsy (mutation in CACNB4; the B4 subunit of the L-type calcium channel) and idiopathic generalized epilepsy (CACN1A1). 3 Mutations of GABAA receptor subunits also have been detected. The gene encoding the 1 subunit, GABRG1, has been linked to juvenile myoclonic epilepsy; mutated GABRG2, encoding an abnormal subunit, has been associated with generalized epilepsy with febrile seizures and childhood absence epilepsy.
    [Show full text]