Non-ECC Unbuffered DIMM Non-ECC Vs

Total Page:16

File Type:pdf, Size:1020Kb

Non-ECC Unbuffered DIMM Non-ECC Vs Quick Guide to DRAM for Industrial Applications 2019 by SQRAM What’s the difference between DRAM & Flash? DRAM (Dynamic Random Access Memory) and Flash are key components in PC systems, but they are different types of semiconductor products with different speeds/capacity/power-off data storage. High Small Type DRAM Flash Cache data transfer through Location close to CPU PCIe BUS Speed/Cost IC Density low high SRAM Capacity Module 32~64GB 2~8TB Capacity DRAM by ns Speed by ms (faster than flash) non-volatile memory: Power-Off volatile memory: data can be stored if NAND Flash data will lost if powered off Status powered off Low Large What are the features of DRAM? High Data Processing Speed Volatile Memory Extremely fast with low latency by RAM is a type of volatile memory. nanoseconds(10-9) access time. Much faster than It retains its data while powered on, but the data will HDD or SSD data speeds. vanish once the power is off. CPU DRAM HDD Extremely Fast Transfer Higher Capacity, Better Performance DRAM is closely connected to the CPU with short DRAM of higher capacity can process more data to access time. The system performance will drop if increase system performance. The more data data is processed directly by storage without DRAM. processed by DRAM, the less HDD processing time. What are the DDR specifications (DDR, DDR2, DDR3, DDR4)? The prefetch length of DDR SDRAM is 2 bits. On DDR2 the prefetch length is increased to 4 bits, and on DDR3 and on DDR DDR 4 it was raised to 8 bits and 16 bits respectively. Higher prefetch length allows higher data transfer rates and lower power consumption. DDR2 Type DDR DDR2 DDR3/DDR3L DDR4 Prefetch 4 4,8 8 16 Length Voltage 2.5V/2.6V 1.8V 1.5V/1.35V 1.2V DDR3 Data Rate 533/667/80 1066/1333/ 2133/2400/ 266-400 (MT/s) 0 1600/1866 2666/3200 Density 128Mb- 512Mb- 1Gb-8Gb 4Gb-32Gb (by chip) 512Mb 2Gb DDR4 Organization x4,x8,x16 x4,x8,x16 x4,x8,x16 x4,x8,x16 (by chip) Capacity 512MB- 128MB-1GB 1GB-16GB 2GB-128GB (by module) 4GB What are the DIMM types and features? Unbuffered DIMM Buffered DIMM SODIMM for NBs, laptops, box PCs Register DIMM: Higher bandwidth and UDIMM for desktops capacity than UDIMM, suitable for high- ECC DIMM (DIMM with Error end server markets Correcting Code function) for Load Reduced DIMM: Extreme capacity networking, military, telecom, servers above 32GB and low power consumption Unbuffered SODIMM (SODIMM) • Small Outline Dual In-Line Memory Module SDRAM PCB Resistor EEPROM ETT IC Major IC No Brand Samsung Inking Capacitor (module vendor brand) Specification PN No Specification Serial No. No Serial No. Non-ECC Unbuffered DIMM Non-ECC vs. ECC Unbuffered DIMM • PC DIMM as basic function with best cost Non-ECC Unbuffered DIMM ECC Unbuffered DIMM • Non error correction function, neither Register buffer function. • CostCost-effective effective DIMM withoutsolution error ECC: Error Correcting Code Memory correction function, neither Register buffer function ECC memory has one extra unit DRAM IC on each BANK for Error Correction Non-ECC memory data path: 64 bits ECC memory data path: 72 bit (64 data bits Applications: PC DIMM with basic plus 8 ECC bits for data correction) function and cost effectiveness Applications: workstations, entry-level servers UDIMM vs. RDIMM (Buffered DIMM) • Unbuffered Dual In-Line • Registered Dual In-Line Memory Module Memory Module SDRAM PCB EEPROM Register Resister Capacitor Registered DIMM (Buffered DIMM) Registered DIMM improves signal integrity by having a register on the DIMM to buffer the address and command signals between each DRAM modules and the system's memory controller,. It also features an Error Correcting Code function. Registered memory often has a higher price because of the lower number of units sold and additional circuitry required. Register DIMMs achieve higher bandwidth and capacity than unbuffered DIMM. Application: High-end server market. Load Reduced DIMM (LR-DIMM) LRDIMM adds a special memory buffer chip to the bus. Memory buffer chips in the processer packetize and transmit all data, command and control signals on the LRDIMM. In this way, the memory buffer handles all the reads and writes to the DRAM chips. LRDIMMs achieve capacity higher than 32GB and better power saving efficiency. RDIMM LR-DIMM CMD/ADDR Memory /CLK Memory Controller Controller Buffer Register CMD/ Memory ADDR/ CLK DRAM IC Level & Production Flow Major Manufacturers Fully tested DRAM and mark IC brand Vendor: Samsung, Micron, Hynix Wafer Package Test IC Application: High-end market, value conscious inking market ETT : Effectively TesTed Module manufacturing brand Not ully tested DRAM, unmarked Wafer Package Test IC Application: Value memory market inking UTT : UnTesTed Non-brand Not tested and unmarked Wafer Package IC inking Downgraded Non-brand Unknown production flow, resources Wafer Package Untested and unmarked Why Choose SQRAM for Industrial Applications? Industrial and Robust Design • Original IC with rigorous testing • Wide temperature of -40~85 °C • Fixed BOM and 3-year longevity • Rugged DIMM against shock and extreme vibration • Optional industrial heatsink Smart DRAM Management Software • Manage up to 8 slots of SQRAM memory modules • Operating temperature monitoring • Temperatures alert over 65°C Download Watch • SPD information and timing table SQRAM Manger Tutorial Customization and Value-Added Service • Conformal coating/ underfill • Anti-sulfur protection • Industrial heatsink SQRAM 32GB DDR4 2666 Unbuffered Memory Solutions Server-Grade Performance / Optional Heatsink Available / Monitoring Software Unbuffered SODIMM ECC Unbuffered DIMM ECC SODIMM Rugged DIMM SQR-SD4N/ SQR-SD4I SQR-UD4N/I(ECC) SQR-SD4N/I(ECC) SQR-YD4N/I 4G~32G 4G~32G 4G~32G 8G~32G 0~85℃/-40~85℃ 0~85℃/-40~85℃ 0~85℃/-40~85℃ 0~85℃/-40~85℃ Data Center Medical Transportation Defense SQRAM Product Selection https://www.advantech.com/products/memory- module/sub_memory_module E-Catalog https://advcloudfiles.advantech.com/ecatalog/2019/0 1250951.pdf Contact Your Local Sales Offices https://www.advantech.com/contact KC. Liu. Advantech .
Recommended publications
  • HP Z620 Memory Configurations and Optimization
    HP recommends Windows® 7. HP Z620 Memory Configurations and Optimization The purpose of this document is to provide an overview of the memory configuration for the HP Z620 Workstation and to provide recommendations to optimize performance. Supported Memory Modules1 Memory Features The types of memory supported on a HP Z620 are: ECC is supported on all of our supported DIMMs. • 2 GB and 4 GB PC3-12800E 1600MHz DDR3 • Single-bit errors are automatically corrected. Unbuffered ECC DIMMs • Multi-bit errors are detected and will cause the • 4 GB and 8 GB PC3-12800R 1600MHz DDR3 system to immediately reboot and halt with an Registered DIMMs F1 prompt error message. • 1.35V and 1.5V DIMMs are supported, but the Non-ECC memory does not detect or correct system will operate the DIMMs at 1.5V only. single-bit or multi-bit errors which can cause • 2 Gb and 4 Gb based DIMMs are supported. instability, or corruption of data, in the platform. See the Memory Technology White Paper for See the Memory Technology White Paper for additional technical information. additional technical information. Command and Address parity is supported with Platform Capabilities Registered DIMMs. Maximum capacity Optimize Performance • Single processor: 64 GB Generally, maximum memory performance is • Dual processors: 96 GB achieved by evenly distributing total desired memory capacity across all operational Total of 12 memory sockets channels. Proper individual DIMM capacity • 8 sockets on the motherboard: 4 channels per selection is essential to maximizing performance. processor and 2 sockets per channel On the second CPU, installing the same • 4 sockets on the 2nd CPU and memory amount of memory as the first CPU will optimize module: 4 channels per processor and 1 performance.
    [Show full text]
  • Interfacing EPROM to the 8088
    Chapter 10: Memory Interface Introduction Simple or complex, every microprocessor-based system has a memory system. Almost all systems contain two main types of memory: read-only memory (ROM) and random access memory (RAM) or read/write memory. This chapter explains how to interface both memory types to the Intel family of microprocessors. MEMORY DEVICES Before attempting to interface memory to the microprocessor, it is essential to understand the operation of memory components. In this section, we explain functions of the four common types of memory: read-only memory (ROM) Flash memory (EEPROM) Static random access memory (SRAM) dynamic random access memory (DRAM) Memory Pin Connections – address inputs – data outputs or input/outputs – some type of selection input – at least one control input to select a read or write operation Figure 10–1 A pseudomemory component illustrating the address, data, and control connections. Address Connections Memory devices have address inputs to select a memory location within the device. Almost always labeled from A0, the least significant address input, to An where subscript n can be any value always labeled as one less than total number of address pins A memory device with 10 address pins has its address pins labeled from A0 to A9. The number of address pins on a memory device is determined by the number of memory locations found within it. Today, common memory devices have between 1K (1024) to 1G (1,073,741,824) memory locations. with 4G and larger devices on the horizon A 1K memory device has 10 address pins. therefore, 10 address inputs are required to select any of its 1024 memory locations It takes a 10-bit binary number to select any single location on a 1024-location device.
    [Show full text]
  • Itanium-Based Solutions by Hp
    Itanium-based solutions by hp an overview of the Itanium™-based hp rx4610 server a white paper from hewlett-packard june 2001 table of contents table of contents 2 executive summary 3 why Itanium is the future of computing 3 rx4610 at a glance 3 rx4610 product specifications 4 rx4610 physical and environmental specifications 4 the rx4610 and the hp server lineup 5 rx4610 architecture 6 64-bit address space and memory capacity 6 I/O subsystem design 7 special features of the rx4610 server 8 multiple upgrade and migration paths for investment protection 8 high availability and manageability 8 advanced error detection, correction, and containment 8 baseboard management controller (BMC) 8 redundant, hot-swap power supplies 9 redundant, hot-swap cooling 9 hot-plug disk drives 9 hot-plug PCI I/O slots 9 internal removable media 10 system control panel 10 ASCII console for hp-ux 10 space-saving rack density 10 complementary design and packaging 10 how hp makes the Itanium transition easy 11 binary compatibility 11 hp-ux operating system 11 seamless transition—even for home-grown applications 12 transition help from hp 12 Itanium quick start service 12 partner technology access centers 12 upgrades and financial incentives 12 conclusion 13 for more information 13 appendix: Itanium advantages in your computing future 14 hp’s CPU roadmap 14 Itanium processor architecture 15 predication enhances parallelism 15 speculation minimizes the effect of memory latency 15 inherent scalability delivers easy expansion 16 what this means in a server 16 2 executive The Itanium™ Processor Family is the next great stride in computing--and it’s here today.
    [Show full text]
  • Configuring and Using DDR3 Memory with HP Proliant Gen8 Servers Best Practice Guidelines for Proliant Servers with Intel® Xeon® Processors
    Engineering white paper, 2nd Edition Configuring and using DDR3 memory with HP ProLiant Gen8 Servers Best Practice Guidelines for ProLiant servers with Intel® Xeon® processors Table of contents Introduction 3 Overview of DDR3 memory technology 3 Basics of DDR3 memory technology 3 Basics of DIMMs 4 DDR3 DIMM types 5 HP SmartMemory 6 HP Advanced Memory Error Detection 6 ProLiant Gen8 memory architecture for servers with Intel® Xeon® E5-2600 series processors 6 Overview 6 ProLiant Gen8 servers using the Intel® Xeon® E5-2600 series processors 7 ProLiant Gen8 Intel® Xeon® E5-2600 series processors 7 ProLiant Gen8 memory architecture for servers using Intel® Xeon® E5-2400 series processors 8 Overview 8 ProLiant Gen8 servers using Intel® Xeon® E5-2400 series processors 9 ProLiant Gen8 Intel® Xeon® E5-2400 series processors 9 DDR3 DIMMs for ProLiant Gen8 servers 10 Populating memory in ProLiant Gen8 servers 11 ProLiant Gen8 memory slot configurations 11 Population rules for ProLiant Gen8 servers 11 DIMM Population Order 12 Memory system operating speeds 14 General population guidelines 14 Optimizing memory configurations 15 Optimizing for capacity 15 Optimizing for performance 15 Optimizing for lowest power consumption 20 Optimizing for Resiliency 22 Understanding unbalanced memory configurations 23 Memory configurations that are unbalanced across channels 23 Memory configurations that are unbalanced across Processors 23 BIOS Settings for memory 24 Controlling Memory Speed 24 Setting Memory Interleave 25 For more information 26 Appendix A - Sample Configurations for 2P ProLiant Gen8 servers 27 24 DIMM slot servers using Intel® Xeon® E5-2600 processor series 27 16 DIMM Slot Servers using Intel® Xeon® E5-2600 series processors 28 12 DIMM Slot Servers using Intel® Xeon® E5-2400 series processors 29 2 Introduction This paper provides an overview of the new DDR3 memory and its use in the 2 socket HP ProLiant Gen8 servers using the latest Intel® Xeon® E5-2600 series processor family.
    [Show full text]
  • IMME128M64D2SOS8AG (Die Revision E) 1Gbyte (128M X 64 Bit)
    Product Specification | Rev. 1.0 | 2015 IMME128M64D2SOS8AG (Die Revision E) 1GByte (128M x 64 Bit) 1GB DDR2 Unbuffered SO-DIMM By ECC DRAM RoHS Compliant Product Product Specification 1.0 1 IMME128M64D2SOS8AG www.intelligentmemory.com Version: Rev. 1.0, FEB 2015 1.0 - Initial release ReReRemark:Re mark: Please refer to the last page of the i) Contents ii) List of Table iii) List of Figures . We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Product Specification 1.0 2 IMME128M64D2SOS8AG www.intelligentmemory.com Features 200-Pin Unbuffered Small Outline Dual-In-Line Memory Module Capacity: 1GB Maximum Data Transfer Rate: 6.40 GB/Sec JEDEC-Standard Built by ECC DRAM Chips Power Supply: VDD, VDDQ =1.8± 0.1 V Bi-directional Differential Data-Strobe (Single-ended data-strobe is an optional feature) 64 Bit Data Bus Width without ECC Programmable CAS Latency (CL): o PC2-6400: 4, 5, 6 o PC2-5300: 4, 5 Programmable Additive Latency (Posted /CAS) : 0, CL-2 or CL-1(Clock) Write Latency (WL) = Read Latency (RL) -1 Posted /CAS On-Die Termination (ODT) Off-Chip Driver (OCD) Impedance Adjustment Burst Type (Sequential & Interleave) Burst Length: 4, 8 Refresh Mode: Auto and Self 8192 Refresh Cycles / 64ms Serial Presence Detect (SPD) with EEPROM SSTL_18 Interface Gold Edge Contacts 100% RoHS-Compliant Standard Module Height: 30.00mm (1.18 inch) Product Specification 1.0 3 IMME128M64D2SOS8AG www.intelligentmemory.com ECC DRAM Introduction Special Features (ECC ––– Functionality) - Embedded error correction code (ECC) functionality corrects single bit errors within each 64 bit memory-word.
    [Show full text]
  • (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics
    Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics Minesh Pately Jeremie S. Kimzy Taha Shahroodiy Hasan Hassany Onur Mutluyz yETH Zurich¨ zCarnegie Mellon University Increasing single-cell DRAM error rates have pushed DRAM entirely within the DRAM chip [39, 76, 120, 129, 138]. On-die manufacturers to adopt on-die error-correction coding (ECC), ECC is completely invisible outside of the DRAM chip, so ECC which operates entirely within a DRAM chip to improve factory metadata (i.e., parity-check bits, error syndromes) that is used yield. e on-die ECC function and its eects on DRAM relia- to correct errors is hidden from the rest of the system. bility are considered trade secrets, so only the manufacturer Prior works [60, 97, 98, 120, 129, 133, 138, 147] indicate that knows precisely how on-die ECC alters the externally-visible existing on-die ECC codes are 64- or 128-bit single-error cor- reliability characteristics. Consequently, on-die ECC obstructs rection (SEC) Hamming codes [44]. However, each DRAM third-party DRAM customers (e.g., test engineers, experimental manufacturer considers their on-die ECC mechanism’s design researchers), who typically design, test, and validate systems and implementation to be highly proprietary and ensures not to based on these characteristics. reveal its details in any public documentation, including DRAM To give third parties insight into precisely how on-die ECC standards [68,69], DRAM datasheets [63,121,149,158], publi- transforms DRAM error paerns during error correction, we cations [76, 97, 98, 133], and industry whitepapers [120, 147].
    [Show full text]
  • ECE 571 – Advanced Microprocessor-Based Design Lecture 17
    ECE 571 { Advanced Microprocessor-Based Design Lecture 17 Vince Weaver http://web.eece.maine.edu/~vweaver [email protected] 3 April 2018 Announcements • HW8 is readings 1 More DRAM 2 ECC Memory • There's debate about how many errors can happen, anywhere from 10−10 error/bit*h (roughly one bit error per hour per gigabyte of memory) to 10−17 error/bit*h (roughly one bit error per millennium per gigabyte of memory • Google did a study and they found more toward the high end • Would you notice if you had a bit flipped? • Scrubbing { only notice a flip once you read out a value 3 Registered Memory • Registered vs Unregistered • Registered has a buffer on board. More expensive but can have more DIMMs on a channel • Registered may be slower (if it buffers for a cycle) • RDIMM/UDIMM 4 Bandwidth/Latency Issues • Truly random access? No, burst speed fast, random speed not. • Is that a problem? Mostly filling cache lines? 5 Memory Controller • Can we have full random access to memory? Why not just pass on CPU mem requests unchanged? • What might have higher priority? • Why might re-ordering the accesses help performance (back and forth between two pages) 6 Reducing Refresh • DRAM Refresh Mechanisms, Penalties, and Trade-Offs by Bhati et al. • Refresh hurts performance: ◦ Memory controller stalls access to memory being refreshed ◦ Refresh takes energy (read/write) On 32Gb device, up to 20% of energy consumption and 30% of performance 7 Async vs Sync Refresh • Traditional refresh rates ◦ Async Standard (15.6us) ◦ Async Extended (125us) ◦ SDRAM -
    [Show full text]
  • DDR ECC Reference Design to Improve Memory Reliability in 66Ak2gx-Based Systems
    TI Designs: TIDEP-0070 DDR ECC Reference Design to Improve Memory Reliability in 66AK2Gx-Based Systems TI Designs Features This reference design describes system considerations • 32-bit DDR3L Interface With Optional 4-bit ECC for for the DDR-SDRAM memory interface with Error High-Reliability System Designs Correcting Code (ECC) support in high-reliability • Flexible System Configurations With DDR ECC applications based on the 66AK2Gx Multicore DSP + ® • Built-In Read-Modify-Write (RMW) Hardware ARM System-on-Chip (SoC). System interfaces, Supporting ECC Operation With Non-Aligned board hardware, software, throughput performance, Access and diagnostic procedures, are discussed. Detailed description about the DDR interface is available in the • Minimum Performance Impact device Technical Reference Manual (TRM). • Implemented and tested on EVMK2G Hardware and Supported in Processor SDK for K2G Design Resources Applications TIDEP0070 Design Folder • Automotive Audio Amplifiers 66AK2G02 Product Folder • Home Audio 66AK2G12 Product Folder K2G General Purpose • Professional Audio EVM Tool Folder EVM • Power Protection Processor SDK for K2G Download Software • Industrial Communications and Controls ASK Our E2E Experts 66AK2G DDREMIF Control Address Data Device_0 … … Device_n Device_ECC An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information. TIDUBO4B–April 2016–Revised June 2018 DDR ECC Reference Design to Improve Memory Reliability in 66AK2Gx-
    [Show full text]
  • Managing Correctable Memory Errors on Cisco UCS Servers
    Managing Correctable Memory Errors on Cisco UCS Servers This document provides empirical evidence that shows no correlation between correctable and uncorrectable errors on UCS M4 and earlier generation servers. Furthermore, using industry-standard benchmarks, this document demonstrates that systems with correctable errors do not exhibit system performance degradation. Given these findings, starting with UCS Manager (UCSM) 2.2(7), 3.1(1), and Cisco Integrated Management Controller (CIMC) 2.0(9) for rack standalone, Cisco UCS server memory-error threshold policies will not declare modules with correctable errors to be degraded. For customers who are not on UCSM 2.2(7), 3.1(1), or CIMC 2.0(9) or newer that experience a degraded memory alert for correctable errors, the Cisco UCS team recommends that memory modules with correctable errors not be replaced immediately upon alert. Instead please reset the memory-error counters and resume operation. See the Additional Resources section for UCS M5 servers. © 2020 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 9 Contents Field Recommendations: Correctable Errors and Threshold Policies................................................................ 3 Overview of Memory Errors .................................................................................................................................... 3 Classification of Memory Errors ...........................................................................................................................
    [Show full text]
  • HP Z220 CMT and HP Z220 SFF Memory Configurations And
    HP recommends Windows® 7. HP Z220 CMT and HP Z220 SFF Memory Configurations and Optimization The purpose of this document is to provide an overview of the memory configuration for the HP Z220 CMT and HP Z220 SFF Workstation and to provide recommendations to optimize performance. 1 Supported memory modules The types of memory supported on a HP Z220 CMT and HP Z220 SFF Workstations are: • 2 GB, 4 GB and 8 GB PC3-12800U 1600MHz DDR3 Unbuffered non-ECC DIMMs • 2 GB, 4 GB and 8 GB PC3-12800E 1600MHz DDR3 Unbuffered ECC DIMMs • 1.35V and 1.5V DIMMs, but the system will operate the DIMMs, safely, at 1.5V only. • Single and dual rank 2 Gb and 4 Gb based DIMMs See the Memory Technology White Paper for additional technical information. Figure 1 Processor and memory support Supports Non-ECC Supports Processor Notes Memory ECC Memory Intel® Core™ i3-32xx X X Intel® Core™ i3-21xx X X Intel® Core™ i5-34xx X * Intel® Core™ i5-35xx X * Intel® Core™ i7-37xx X * Xeon® E3-12xx v2 X X Pentium® G6xx X X * If ECC memory is added to the system, the ECC function is disabled and the DIMMs will appear to the system as Non-ECC memory. Platform capabilities Maximum capacity: 32 GB • HP Z220 has a total of 4 memory sockets • 2 channels with 2 sockets per channel Speed • 1600 MHz, 1333 MHz and 1066 MHz DIMMs are supported • Memory will operate at the speed of the slowest rated installed processor or DIMM. The processor determines what type of memory is supported on the HP Z220.
    [Show full text]
  • HP Z Workstations and PTC Creo Selection of HP Workstations for Running PTC Creo 2.0 and 3.0
    Technical white paper HP Z Workstations and PTC Creo Selection of HP Workstations for running PTC Creo 2.0 and 3.0 Table of contents Why use HP Z Workstations for PTC Creo? ................................................................................................................... 2 How to select an HP Workstation for PTC Creo .......................................................................................................... 2 Tuning and measuring ...................................................................................................................................................... 3 Application settings for enhanced graphics quality ................................................................................................... 3 Recommended configurations ........................................................................................................................................ 4 Technical white paper | HP Z Workstations and PTC Creo Why use HP Z Workstations for PTC Creo? • Complimentary technical leadership with HP Z Workstations and PTC Creo. • Numerous certified, high-performing platforms offering scale and choice. • HP Z Workstations certified on Creo 2.0 are supported on Creo 3.0 and the next future major release, based on the PTC N+2 certification policy. How to select an HP Workstation for PTC Creo While PTC Creo will run on any HP Workstation configuration, there are several options to consider to optimise the performance of PTC Creo on the selected HP Workstation. These aspects are
    [Show full text]
  • "Low-Power Support Using Texas Instruments SN74SSTV16857 and SN74SSTV16859"
    Application Report SCEA020 - February 2001 Low-Power Support Using Texas Instruments SN74SSTV16857 and SN74SSTV16859 DDR-DIMM Registers Stephen M. Nolan Standard Linear & Logic ABSTRACT The Texas Instruments SN74SSTV16857 and SN74SSTV16859 registers support the low-power mode of the DDR-DIMM. This application report explains the low-power mode and the features of the registers that support the low-power mode. Also, the considerations that the system designer must be aware of when implementing the low-power state of a registered memory module are explained. The sequence that must be followed to utilize the register properly is detailed, including the interpretation of the associated register timing specifications. Finally, the different static- and dynamic-current specifications are analyzed, along with examples of how to calculate the dynamic operating current requirement of the registers. Contents Introduction . 2 Background and Features of Registers. 5 Sequence of Entering and Exiting the Low-Power State. 6 Considerations of Register. 6 How tinact and tact Are Characterized. 9 Dynamic- and Static-Current Specifications. 9 ICC Static Standby Current. 9 ICC Static Operating Current. 10 ICCD Dynamic Operating Current – Clock Only. 10 ICCD Dynamic Operating Current – Each Data Input. 11 Calculating Power Consumption in the Application. 11 Summary . 12 Glossary . 12 List of Figures 1 SN74SSTV16857 . 3 2 SN74SSTV16859 . 4 3 Parameter Measurement Information (VDD = 2.5 V ± 0.2 V). 9 1 SCEA020 Introduction The widespread demand for more main-memory capacity and bandwidth in computer systems has lead to the development of the JEDEC standard for DDR-SDRAM-based, 184-pin, registered memory modules. These DDR DIMMs provide twice the data-bus bandwidth of previous-generation single-data-rate (SDR) memory systems.
    [Show full text]