DOI: 10.1126/Science.1175802 , 64 (2009); 326 Science Et Al. Tim D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Characteristics and Chronology of the Earliest Acheulean at Konso, Ethiopia
The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia Yonas Beyenea,b, Shigehiro Katohc, Giday WoldeGabrield, William K. Harte, Kozo Utof, Masafumi Sudog, Megumi Kondoh, Masayuki Hyodoi, Paul R. Rennej,k, Gen Suwal,1, and Berhane Asfawm,1 aAssociation for Research and Conservation of Culture (A.R.C.C.), Awassa, Ethiopia; bFrench Center for Ethiopian Studies, Addis Ababa, Ethiopia; cDivision of Natural History, Hyogo Museum of Nature and Human Activities, Yayoigaoka 6, Sanda 669-1546, Japan; dEES-6/D462, Los Alamos National Laboratory, Los Alamos, NM 87545; eDepartment of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056; fNational Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8567, Japan; gInstitute of Earth and Environmental Science, University of Potsdam, 14476 Golm, Germany; hLaboratory of Physical Anthropology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan; iResearch Center for Inland Seas, Kobe University, Kobe 657-8501, Japan; jBerkeley Geochronology Center, Berkeley, CA 94709; kDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; lUniversity Museum, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; and mRift Valley Research Service, Addis Ababa, Ethiopia This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2008. Contributed by Berhane Asfaw, December 8, 2012 (sent for review November 30, 2012) The Acheulean technological tradition, characterized by a large carcass processing (13, 14), usually interpreted as a part of an (>10 cm) flake-based component, represents a significant techno- advanced subsistence strategy coincident with or postdating the logical advance over the Oldowan. -
Class 2: Early Hominids
Earliest Hominins CHARLES J VELLA, PHD JULY 25 2018 This is latest theory of how Lucy died! We are Mammals 3 defining mammalian traits: hair, mammary glands, homeothermy Mammalian traits show an adaptation for adaptability Miocene era: 23 to 5 Ma, Warmer global period • Ape grade: Planet of the apes • Over 30 genera and 100 species of ape – compared with 6 today • Location: Africa and Eurasia Proconsul: 25 to 23 Ma, during Miocene; arboreal quadruped Primates • Larger body size • Larger brain • Complete stereoscopic vision • Longer gestation, infancy, life span • More k-selected (tend towards single offspring) • Greater dependency on learned behavior • More social Great Apes Bonobos and Chimps split ~1 Ma Superfamily: Hominoidea Gibbons, Gorillas, Orangutan, Chimpanzee, Human Greater encephalization (brain to body ratio) = smarter larger body, brachiation, social complexity, lack of tail Why did Newt Gingrich recommend this book to all new politicians? Detailed and thoroughly engrossing account of ape rivalries and coalitions. Machiavellianism: political behavior is rooted at a level of development that is below the cognitive and is as much instinctive as it is learned. de Waal 1982 De Waal: Machiavellian IQ Machiavelli's The Prince: Frans de Waal introduced the term 'Machiavellian Intelligence' to describe the social and political behavior of chimpanzees Social behaviors: reconciliation, alliance, and sabotage Tactical deception in primates: Vervet monkeys use false predator alarm calls to get extra food Chimpanzees use deception to mate with females belonging to alpha male Chimpanzee cultures • Chimp Cultures: shared behaviors in different communities: • pounding actions • fishing; • probing; • forcing • comfort behavior • miscellaneous exploitation of vegetation properties • exploitation of leaf properties; • grooming; • attention-getting. -
Ardipithecus Kadabba the Middle Awash Series Series Editor Tim White, University of California, Berkeley
Ardipithecus kadabba The Middle Awash Series Series Editor Tim White, University of California, Berkeley University of California Press Editor Charles R. Crumly Homo erectus: Pleistocene Evidence from the Middle Awash, Ethiopia, edited by W. Henry Gilbert and Berhane Asfaw Ardipithecus kadabba: Late Miocene Evidence from the Middle Awash, Ethiopia, edited by Yohannes Haile-Selassie and Giday WoldeGabriel Ardipithecus kadahba Late Miocene Evidence from the Middle Awash, Ethiopia EDITED BY YOHANNES HAILE-SELASS1E AND GIDAY WOLDEGABRIEL UNIVERSITY OF CALIFORNIA PRESS 'ey Los Angeles University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. The Middle Awash Series, Volume 2 University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England © 2009 by "The Regents of the University of California Library of Congress Cataloging-in-Publication Data Ardipithecus kadabba : late miocene evidence from the Middle Awash, Ethiopia / edited by Yohannes Haile-Selassie, Giday WoldeGabriel. p. cm. — (The Middle Awash series) Includes bibliographical references and index. ISBN 978-0-520-25440-4 (cloth : alk. paper) 1. Ardipithecus kadabba—Ethiopia—Middle Awash. 2. Fossil hominids—Ethiopia—Middle Awash. 3. Human remains (Archaeology)—Ethiopia—Middle Awash. 4. Paleoanthropology— Ethiopia—Middle Awash. 5. Middle Awash (Ethiopia)—Antiquities. I. Haile-Selassie, Yohannes, 1961- II. WoldeGabriel, Giday. GN282.73.A73 2008 569.90963— 2008004004 Manufactured in the United States 16 15 14 13 12 11 10 09 10 987654321 The paper used in this publication meets the minimum requirements of ANSI/NISO Z39.48-1992 (R 1997) (Permanence of Paper). -
The Perspective from Africa
Anthropogeny: The Perspective from Africa Public Symposium Friday, May 31, 2019 Chairs: Berhane Asfaw, Rift Valley Research Service & Lyn Wadley, University of the Witwatersrand Sponsored by: Center for Academic Research and Training in Anthropogeny (CARTA) With generous support from: The G. Harold and Leila Y. Mathers Charitable Foundation ABSTRACTS Australopithecus in East and South Africa Job Kibii, National Museums of Kenya Australopithecus is a genus of hominins whose evolutionary evidence is confined to the African continent. The genus evolved in eastern and/or southern Africa around 4 million years ago, eventually becoming extinct slightly less than two million years ago. Australopithecus is scientifically accepted as the common ancestor of the Paranthropus and Homo. Scientists recognize five species of Australopithecines; Australopithecus anamensis, A. afarensis, A. africanus, A. garhi, and A. sediba. Their relationship to each other and the earliest form of Homo, Homo habilis, remains controversial due to the sparse fossil record in Africa. There are two main ways of expressing evolutionary relationships: phylogenetic trees and cladograms. This presentation will explore current fossil evidence regarding members of the genus Australopithecus and their phylogenetic and cladistic relationships. The Chad Basin Andossa Likius, University of Moundou (Chad) Until recently, Chad has remained a poorly known country as far as paleontological research, compared to its neighbors on the African continent. But since 1994, the Mission Paléoanthropologique Franco-Chadienne (MPFT) is conducting intensive geological and paleontological surveys in the Djurab Desert. More than 400 Mio-Pliocene fossil sites dated between 3 and 7 million years ago (mya) have been identified. These sites have yielded rich and diverse fossil faunal assemblages of vertebrates, unique in Central Africa. -
Climatic and Environmental Challenges: Learning from the Horn of Africa
Climatic and Environmental Challenges: Learning from the Horn of Africa David Ambrosetti, Jean-Renaud Boisserie, Deresse Ayenachew and Thomas Guindeuil (dir.) DOI: 10.4000/books.cfee.101 Publisher: Centre français des études éthiopiennes Place of publication: Addis-Abeba Year of publication: 2016 Published on OpenEdition Books: 28 July 2016 Serie: Corne de l’Afrique contemporaine / Contemporary Horn of Africa Electronic ISBN: 9782821873001 http://books.openedition.org Electronic reference AMBROSETTI, David (ed.) ; et al. Climatic and Environmental Challenges: Learning from the Horn of Africa. New edition [online]. Addis-Abeba: Centre français des études éthiopiennes, 2016 (generated 02 octobre 2020). Available on the Internet: <http://books.openedition.org/cfee/101>. ISBN: 9782821873001. DOI: https://doi.org/10.4000/books.cfee.101. This text was automatically generated on 2 October 2020. It is the result of an OCR (optical character recognition) scanning. © Centre français des études éthiopiennes, 2016 Terms of use: http://www.openedition.org/6540 1 In the prospect of the COP21 held in Paris in December 2015, the French Centre for Ethiopian Studies (CFEE) organised a scientific conference on environmental and climatic changes in the horn of Africa, with a decisive financial support of the Institut français (Fonds d’Alembert), Paris. The conference was part of a larger event, called “the Road to Paris” and organised by the French Embassy to Ethiopia and the Horn of Africa Regional Environment Centre and Network (HoA- REC&N), Addis Ababa University, in HoA-REC&N headquarters at Gullele Botanic Gardens, Addis Ababa, from 7 to 9 April 2015. In this event, our first purpose was to set aside from the pressure of short-term and policy- oriented concerns raised by the international bureaucracies and bilateral donors, as to try to explore diverse, cross-disciplinary dimensions related to environmental change in the region in a wider way, wider in time and also wider in the elements observed. -
Reconstructing Human Evolution: Achievements, Challenges, and Opportunities
Reconstructing human evolution: Achievements, challenges, and opportunities Bernard Wood1 George Washington University, Washington, DC 20052 This contribution reviews the evidence that has resolved the can then be used as the equivalent of a null hypothesis when branching structure of the higher primate part of the tree of life considering where to place newly discovered fossil great ape taxa. and the substantial body of fossil evidence for human evolution. It considers some of the problems faced by those who try to interpret The Human Fossil Record. The fossil record of the human clade the taxonomy and systematics of the human fossil record. How do consists of fossil evidence for modern humans plus that of all ex- you to tell an early human taxon from one in a closely related clade? tinct taxa that are hypothesized to be more closely related to How do you determine the number of taxa represented in the modern humans than to any other living taxon. Not so long ago human clade? How can homoplasy be recognized and factored into nearly all researchers were comfortable with according the human attempts to recover phylogeny? clade the status of a family, the Hominidae, with the nonhuman extant great apes (i.e., chimpanzees, bonobos, gorillas, and history | hominin orangutans) placed in a separate family, the Pongidae. But given the abundant evidence for a closer relationship between Pan and his contribution begins by considering two achievements rele- Homo than between Pan and Gorilla (see above), many research- Tvant to reconstructing human evolution: resolving the branch- ers have concluded that the human clade should be distinguished ing structure of the higher primate part of the tree of life and the beneath the level of the family in the Linnaean hierarchy. -
From Ardipithecus Ramidus to Homo Sapiens
36 Duke of Edinburgh Prize to: Gen Suwa Professor and Director, The University Museum, The University of Tokyo for “Human Origins and Evolution: from Ardipithecus ramidus to Homo sapiens” Outline of the work: Prof. Gen Suwa is a biological anthropologist and paleoanthropologist who has considerably contributed to the understanding of human evolution through the discovery and analysis of fossil human remains and associated contextual evidence. His most notable contribution is the elucidation of the earliest stages of human ancestry via the discovery and analysis of the 4.4 million-year (Ma)-old Ardipithecus ramidus and the nearly 6-Ma-old but more fragmentary Ardipithecus kadabba fossils. Other major works include the discovery and naming of the 8-Ma-old African great ape Chororapithecus abyssinicus, the establishment of the timing of the split between the Homo and the robust Australopithecus lineages, the dating of the earliest Acheulean stone tools to 1.75 Ma, and various studies on more recent Pleistocene and Holocene fossil and skeletal materials. Between the 1980s and 1990s, Prof. Suwa has led the comparative analysis of Australopithecus and early Homo, particularly regarding dental fossil records spanning a period between 4 and 1 Ma. Importantly, his work is internationally recognized as the standard for the period between 3 and 2 Ma, which is crucial for the understanding of the emergence of the genus Homo and its subsequent evolutionary trajectories. Suwa’s work on the dentition contributed significantly to the elucidation of the evolution of the earliest Australopithecus species from the more primitive Ardipithecus ramidus by 4.2 Ma, which then largely evolved as a lineage with considerable populational variation and finally split into two clades just after 3 Ma. -
The Origin of Humans: the Record from the Afar of Ethiopia
What is our Real Knowledge about the Human Being Pontifical Academy of Sciences, Scripta Varia 109, Vatican City 2007 www.pas.va/content/dam/accademia/pdf/sv109/sv109-asfaw.pdf THE ORIGIN OF HUMANS: THE RECORD FROM THE AFAR OF ETHIOPIA BERHANE ASFAW I would like to start with just one simple statement. Our own species is anatomically and behaviourally very recent, and cannot be understood or appreciated without taking into account where it came from and the form it evolved from. That is the reason why we need to understand our biolog- ical history. I just want to review the road we had to pass through in our 6 million year biological history. Just to reiterate, evolution is a fact. The rea- son why we say that we are evolved is because of evidence from compara- tive anatomy, molecular biology and fossil evidence. My work is mostly on the fossil evidence. Just to give you a summary, we can classify our six million year biologi- cal history into three chapters (Fig. 1, see page 163). The first chapter, start- ing from the bottom, from the third one, is the chapter of Ardipithecus. That is a very remote group of ancestors that lived from about 6 million years ago to about 4.4 million years ago, according to our knowledge in the fossil record. The second chapter, the Australopithecus era, is the second phase of our biological history. It emerged, from the fossil record as we know it, around 4.1 million years ago and then continued later, the specialised forms continued up to around 1.3 million years ago, overlapping with the third chapter of our history. -
Bones, Stones, and Genes: the Origin of Modern Humans Lecture 4 – Hominid Paleobiology Tim D
Bones, Stones, and Genes: The Origin of Modern Humans Lecture 4 – Hominid Paleobiology Tim D. White, Ph.D. 1. Start of Lecture 4 (0:00) [ Music ][ANNOUNCER:] From the Howard Hughes Medical Institute...The 2011 Holiday Lectures on Science. This year's lectures, "Bones, Stones, and Genes: The Origin of Modern Humans, " will be given by Dr. John Shea, Professor of Anthropology at Stony Brook University; Dr. Sarah Tishkoff, Professor of Genetics and Biology at the University of Pennsylvania; and Dr. Tim White, Professor of Integrative Biology at the University of California, Berkeley. The fourth lecture is titled "Hominid Paleobiology. “And now, a brief video to introduce our lecturer, Dr. Tim White. 2. Profile of Dr. Tim White (1:10) [ Music ][DR. WHITE:] The traditional image I think of the paleoanthropologist is sort of an amateur who rides off into the desert on a camel, kicks some skull out of the sand, exclaims eureka, publishes a headline, and then a personal book about how wonderful it was to find the fossil, and then goes on a lecture circuit. That is not the way modern paleoanthropology proceeds. Modern paleoanthropology is a multidisciplinary effort. So you can come to be a paleoanthropologist through all kinds of different disciplines. To give you a far-out one, space sciences: today, that’s how we find the sites. We don't find them from the top of a camel; we find them from satellites, satellite imagery, digital imagery. And we don't control where we are from looking around at an aerial photograph the way it was, say, 25 years ago when I started in this field; we go out with differential GPS and we can code that and put it right into our field logs. -
Paleoanthropology Society Meeting Abstracts, Minneapolis, Mn, 12-13 April 2011
PALEOANTHROPOLOGY SOCIETY MEETING ABSTRACTS, MINNEAPOLIS, MN, 12-13 APRIL 2011 The Role of Paleosol Carbon Isotopes in Reconstructing the Aramis Ardipithecus ramidus habitat: Woodland or Grassland? Stanley H. Ambrose, Department of Anthropology, University of Illinois, Urbana, USA Giday WoldeGabriel, Environmental Sciences Division, Los Alamos National Laboratory, USA Tim White, Human Evolution Research Center, University of California, Berkeley, USA Gen Suwa, The University Museum, University of Tokyo, JAPAN Paleosols (fossil soils) were sampled across a 9km west to east curvilinear transect of the Aramis Member of the Sagantole Formation in the Middle Awash Valley. Paleosol carbon isotope ratios are interpreted as reflecting floral habitats with 30% to 70%4 C grass biomass, representing woodlands to wooded grasslands (WoldeGabriel et al. Science 326: 65e1–5, 2009). Pedogenic carbonate carbon and oxygen isotope ratios increase from west to east, reflecting grassier, drier habitats on the east, where Ardipithecus ramidus fossils are absent. These data are consistent with diverse lines of geological, paleontological, anatomical, and dental isotopic evidence for the character and distribution of floral habitats associated with Ardipithecus 4.4 Ma (White et al. Science 326: 87–93, 2009). Cerling et al. (Science 328: 1105-d, 2010) presented a new model for interpreting soil carbon isotopes from Aramis. They concluded that Ardipithecus occupied mainly wooded to open grasslands with less than 25% trees and shrubs and narrow strips of riparian woodlands. Geological and pale- ontological evidence for fluviatile deposition and riparian habitats is absent at Aramis. Their isotopic model contradicts all previously published paleosol carbon isotope-based reconstructions of tropical fossil sites, including all previous publications by six coauthors of Cerling et al. -
Lucy, Mother Ethiopia. Exposer La Paléontologie À Addis-Abeba Des Années 1960 À Nos Jours Thomas Guindeuil, Jean-Renaud Boisserie
Lucy, Mother Ethiopia. Exposer la paléontologie à Addis-Abeba des années 1960 à nos jours Thomas Guindeuil, Jean-Renaud Boisserie To cite this version: Thomas Guindeuil, Jean-Renaud Boisserie. Lucy, Mother Ethiopia. Exposer la paléontologie à Addis- Abeba des années 1960 à nos jours. Cahiers d’histoire du Cnam, Cnam, 2016, Les musées scientifiques et techniques innovent : nouvelles expériences, nouvelles médiations, 5 (5), pp122-151. hal-03019274 HAL Id: hal-03019274 https://hal.archives-ouvertes.fr/hal-03019274 Submitted on 23 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 121 Lucy, Mother Ethiopia. Exposer la paléontologie à Addis-Abeba des années 1960 à nos jours Thomas Guindeuil CFEE, IFRE 23, USR 3137. Jean-Renaud Boisserie CFEE, IFRE 23, USR 3137, CNRS. Inaugurée en décembre 2014, la nouvelle En 2000, lors de l’inauguration de galerie de paléontologie et de préhistoire du la première galerie intégralement dédiée Musée national d’Éthiopie constitue le à la paléontologie au Musée national dernier épisode de l’histoire de la restitution d’Éthiopie, le squelette original de Lucy Résumé en Éthiopie des sciences de l’évolution. La est exposé. -
Human Evolution
Introduction to Environmental Science (ENR2100) The Ohio State University, Columbus, Ohio, USA Professors: Brian H. Lower, Ph.D. & Steven K. Lower, Ph.D. Teaching Assistant: Tyler Lower HUMAN EVOLUTION Australopithecus afarensis "Lucy" Ardipithecus ramidus "Ardi" skele- skeleton (AL 288-1). ton (ARA-VP-6/500). Science Institute of Human Origins: October 2009, 326 (5949): 36-40. https://iho.asu.edu/about/lucy’s- http://www.sciencemag.org/con- story tent/326/5949/36 ! Intro Environmental Science • https://itunes.apple.com/us/course/intro-environmental-science/id601450178 Human Evolution Lucy is 3.2 million year old fossil that could walk on two legs and Ardi is a 4.4 million year old fos- sil that could walk on two legs and climb trees. Both were discovered in Africa and provide a great deal of insight into human evolution on Earth. Watch/read the following: 1. Watch “Finding Lucy” (scientific name is Australopithecus afarensis), Dr. Donald Johanson describes the discovery of Lucy. PBS. http://www.youtube.com/watch?v=SPit_Mca8dM 2. Watch “Ancient Human Ancestors: Walking in the Woods” (walking on two legs makes humans unique). PBS. Two anthropologists, Dr. Tim White and Dr. Owen Lovejoy, describe “Ardi” (scientific name is Ardipithecus ramidus) a early hominid that made the transition to bipedalism. http://www.youtube.com/watch?v=CrebQed8b2Q 3. Watch “An Interview with Tim White”, a paleoanthropologist that help discover the 4.4 million year old fossil named Ardi. http://www.youtube.com/watch?v=k0jtu6JHwn0 4. Read the article “Ardi, Oldest Human Ancestor, Unveiled” written by Jennifer Viegas for Discovery News and published on November 27, 2012.