Lucy's Legacy: the Hidden Treasures of Ethiopia

Total Page:16

File Type:pdf, Size:1020Kb

Lucy's Legacy: the Hidden Treasures of Ethiopia DOCENT EDUCATION PACKET FOR TOUR DEVELOPMENT Lucy’s Legacy: The Hidden Treasure of Ethiopia February 10, 2013 – May 12, 2013 Docent Materials prepared by Cameron Jean Walker, Ph.D. and the Bowers Museum Education Department January 2013 Table of Contents Lucy’s Legacy: The Hidden Treasure of Ethiopia An Introduction to Lucy’s Legacy………………………………………………….3 A Magical Mystery Tour of Lucy…………………………………………….........4 What Do We Know About Lucy?.............................................................................7 The Afar Triangle…………………………………………………………………14 Discussion Points …………..…………..………..…………...…………………..16 Key Facts About Lucy....…………………………………………………….........23 Anticipated Questions and Answers to be Used with Museum Visitors………….25 Photos for Background & Context……………..………………………………... 28 Images of Lucy…………………………………………………………………....33 “Let Lucy Sparkle”………………………………………………………………..34 “Discoverer of Lucy Fossil Weighs in On Human Evolution”…………………...36 Abbreviated Bibliography………………………………………………………...38 Bowers Museum Docent Education Packet: Lucy’s Legacy: The Hidden Treasure of Ethiopia January 2013 Page 2 Introduction to Lucy’s Legacy Excerpted from the Bowers Museum press release Ethiopia is the cradle of mankind, the birthplace of coffee, the purported resting place of the Ark of the Covenant—and home to Lucy, the 3.2 million year old hominid that has become the world’s most famous fossil. Even three decades after her discovery, Lucy continues to profoundly influence our understanding of human origins. With 40 percent of her skeleton intact, Lucy remains the oldest and most complete adult human ancestor fully retrieved from African soil. The Lucy fossil evokes a strong response from everyone who sees her, and as such, she is the ultimate goodwill ambassador for Ethiopia. Lucy not only validates Ethiopia’s claim as the Cradle of Mankind, she also introduces viewers to the rich cultural heritage that has flourished in Ethiopia over the course of the last 3,000 years, and to the vibrant country that Ethiopia is today. This exhibition is an opportunity for people to better understand current scientific theory of human evolution, and to see for themselves how the discovery of Lucy continues to profoundly influence our understanding of human origins— even 30 years after her discovery. Lucy’s Legacy: The Hidden Treasure of Ethiopia is an International Exhibition organized by the Houston Museum of Natural Science in collaboration with The Ministry of Culture and Tourism of the Federal Democratic Republic of Ethiopia and the Ethiopian Exhibition Coordinating Committee. National Tour underwritten by The Lester & Sue Smith Foundation and Ethiopian Airlines. Bowers Museum Docent Education Packet: Lucy’s Legacy: The Hidden Treasure of Ethiopia January 2013 Page 3 A Magical Mystery Tour of Lucy (Australopithecus afarensis) by Cameron Jean Walker, Ph.D. Essentials of Paleoanthropology Paleoanthropology is the study of early humans. It involves the discovery and interpretation of physical evidence left behind by human ancestors, or hominins. Paleoanthropologists search for and interpret physical evidence, such as fossils and artifacts. After excavating, reconstructing, dating, and measuring the physical evidence, paleoanthropologists hypothesize about what it tells us about our human ancestors. They try to describe when and where the hominins lived, their appearance, and their capabilities and skills. Paleoanthropologists base their hypotheses on the physical evidence they find, their knowledge of anatomy, and their observations of human and animal behavior in the modern world. The names used to delineate human ancestors come from a scientific system of categorizing animals and plants called taxonomy. Taxonomy was invented by Swedish naturalist Carolus Linnaeus in 1758. It is a way of assigning to each living creature a two-part Latin name. The first part indicates the genus to which the creature belongs and the second part indicates the species. Example: Homo sapiens Some of the earliest human ancestors belonged to the genus Australopithecus. Later human ancestors and modern humans belong to the genus Homo. Paleoanthropologists have assigned human ancestors to a variety of species. A species is a distinct population with a specific shape, size, behavior, and habitat. Bowers Museum Docent Education Packet: Lucy’s Legacy: The Hidden Treasure of Ethiopia January 2013 Page 4 Species assignment is not always easy because the differences in anatomy between two species can be small. As paleoanthropologists unearth new hominin fossils and artifacts, and reanalyze familiar ones using new technologies, they sometimes name new species and often question old species and genus assignments. What is a Hominin? Roughly speaking, a Hominin is what we used to call a Hominid. A creature that paleoanthropologists have agreed is human or a human ancestor. These include all of the Homo species (Homo sapiens, H. ergaster, H. rudolfensis), all of the Australopithecines (Australopithecus afarensis, A. boisei, etc.) and other ancient forms like Paranthropus and Ardipithecus. What is Australopithecus afarensis? One of the longest-lived and best-known early human species— paleoanthropologists have uncovered remains from more than 300 individuals. Found to have been living between 3.85 and 2.95 million years ago in Eastern Africa (Ethiopia, Kenya, and Tanzania). This species survived for more than 900,000 years, which is over four times as long as our own species has been around. It is best known from the sites of Hadar, Ethiopia, where these famous fossils were found: o ‘Lucy’ (AL 288-1) o 'First Family' (AL 333) - 13 individuals including adult males, females and children o Dikika, Ethiopia (Dikika ‘child’ skeleton) o Laetoli Footprings - fossils of this species plus the oldest documented bipedal footprint trails Bowers Museum Docent Education Packet: Lucy’s Legacy: The Hidden Treasure of Ethiopia January 2013 Page 5 What else has been learned about Australopithecus afarensis? Similar to chimpanzees, A. afarensis children grew rapidlyafter birth and reached adulthood earlier than modern humans. This meant A. afarensis had a shorter period of growing up than modern humans have today, leaving them less time for parental guidance and socialization during childhood. A. afarensis had both ape and human characteristics: o Members of this species had apelike face proportions (a flat nose, a strongly projecting lower jaw) o A braincase (with a small brain, usually less than 500 cubic centimeters -- about 1/3 the size of a modern human brain) o Long, strong arms with curved fingers adapted for climbing trees o They also had small canine teeth like all other early humans o A body that stood on two legs and regularly walked upright o Their adaptations for living both in the trees and on the ground helped them survive for almost a million years as climate and environments changed. Bowers Museum Docent Education Packet: Lucy’s Legacy: The Hidden Treasure of Ethiopia January 2013 Page 6 What Do We Know Now About Lucy? o A. afarensis is known from many fossil finds in Tanzania, Kenya and Ethiopia, including Lucy. o Lucy is particularly important because she is the most complete and well- preserved A. afarensis fossil ever found. o Unearthed in 1974, around 40% of her full skeleton was recovered, making her the most complete skeleton of an early human relative known at the time.Australopithecus afarensis lived between about 3.8 and 3.0 million years ago in eastern Africa. A. afarensis is one of the best-known early hominin (human-like) species. o Lucy transformed our thinking about how early hominins walked. o This relative completeness helped scientists begin to understand how early human-like species walked on 2 legs (bipedally). o A. afarensis was once thought to be the earliest human relative to habitually walk upright, but there is now some evidence to suggest earlier species, including A. ramidus, also walked bipedally. Lucy - the most complete skeleton Perhaps the world's most famous early human ancestor, the 3.2-million- year-old ape "Lucy" was the first Australopithecus afarensis skeleton ever found, though her remains are only about 40 percent complete. Discovered in 1974 by paleontologist Donald C. Johanson in Hadar, Ethiopia, A. afarensis was the earliest known human ancestor species for about 20 years. What did Lucy look like? With a mixture of ape and human features—including long dangling arms Pelvic, spine, foot, and leg bones suited to walking upright Slender Lucy stood three and a half feet (107 centimeters) tall Re-creations based on other A. afarensis skulls later found nearby reveal an apelike head with a low and heavy forehead, widely curving cheekbones, and a jutting jaw A brain about the size of a chimpanzee's Bowers Museum Docent Education Packet: Lucy’s Legacy: The Hidden Treasure of Ethiopia January 2013 Page 7 Why was Lucy named Lucy? On the day the specimen was found, the Beatles’ hit song, "Lucy in the Sky With Diamonds", was played repeatedly at a celebratory party, so researchers gave it the name of Lucy. How do we know Lucy was female? Lucy's size gives her away as a female. Later fossil discoveries established that A. afarensis males were quite a bit larger than females. Was Lucy an adult? A number of factors point to Lucy being fully grown. For one thing, her wisdom teeth, which were very humanlike, were exposed and appear to have been in use for a while before her death. Also, the sections (growth plates)
Recommended publications
  • Geologists Probe Hominid Environments
    1999 PRESIDENTIAL ADDRESS Geologists Probe Hominid Environments Gail M. Ashley, Department of Geological Sciences, Rutgers University, New Brunswick, NJ 08903, USA, [email protected] ABSTRACT challenging areas of research often lie at artificially imposed disci- pline boundaries. Here lies the potential for synergy and perhaps The study of an early Pleistocene “time slice” in Olduvai even the generation of a new science (Fig. 2). However, integrat- Gorge, Tanzania, provides a successful example of a recon- ing sciences is not as easy as it might first appear. It requires peo- structed paleolandscape that is rich in detail and adds a small ple to learn language, theories, methodologies, and a bit about piece to the puzzle of hominid evolution in Africa. The recon- the “culture” of the other science and to continually walk in the struction required multidisciplinary interaction of sedimen- other person’s shoes. Simply having lots of scientists with differ- tologists, paleoanthropologists, paleoecologists, and geochro- ent backgrounds working in parallel on the same project doesn’t nologists. Geology plays an increasingly important role in produce the same end result as integrative science. unraveling the record of hominid evolution. Key questions This paper describes a study at Olduvai Gorge, Tanzania (Fig. regarding paleoclimate, paleoenvironment, and perhaps even 3), using a relatively new approach, landscape paleoanthropol- hominid land use are answered by geology, and these answers ogy, that attempts to interpret the landscape during a geologic provide a basis for multidisciplinary work. Landscape pale- instant in time. The project is the Olduvai Landscape Paleo- oanthropology integrates these data from several disciplines anthropology Project (OLAPP), involving a multidisciplinary to interpret the ecological context of hominids during a nar- team.
    [Show full text]
  • 'Lucy' Fossil Found
    Published online 20 September 2006 | Nature | doi:10.1038/news060918-5 News Little 'Lucy' fossil found Toddler hominin has arms for swinging and legs for walking. Rex Dalton The 3.3-million-year-old bones of a female toddler from Ethiopia are telling scientists a story about the route human ancestors took from the trees to the ground. In today's issue of Nature, an Ethiopian-led international team reports the discovery of a juvenile skeleton of the species commonly known as 'Lucy', or Australopithecus afarensis.1,2 The researchers have named her Selam, after an Ethiopian word for 'peace'. The specimen, which is the oldest and most complete juvenile of a human relative ever found, has features that stand as striking examples of part-way evolution between primitive apes and modern humans. Although many other samples of A. afarensis have been found before, this is the first one reported to come complete with a whole shoulder-blade bone (scapula). In modern humans the scapula has a ridge running horizontally across the top of the bone; in apes the scapula's ridge reaches further down the Little Salem is the most back, where it can help to throw more muscle into arm action, as would be needed to swing from trees. ancient toddler ever found. In the young A. afarensis, the scapula looks to be part-way between. Zeresenay Alemseged and Copyright Authority for Research and Conservation "The animal was losing its capacity to be arboreal — heading right toward being human," says of Cultrual Heritages anthropologist Owen Lovejoy of Kent State University in Ohio.
    [Show full text]
  • Mechanics of Bipedalism: an Exploration of Skeletal Morphology and Force Plate Anaylsis Erin Forse May 04, 2007 a Senior Thesis
    MECHANICS OF BIPEDALISM: AN EXPLORATION OF SKELETAL MORPHOLOGY AND FORCE PLATE ANAYLSIS ERIN FORSE MAY 04, 2007 A SENIOR THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF ARTS IN ARCHAEOLOGICAL STUDIES UNIVERSITY OF WISCONSIN- LA CROSSE Abstract There are several theories on how humans learned to walk, and while these all address the adaptations needed for walking, none adequately describes how our early ancestors developed the mechanism to walk. Our earliest recognizable relatives, the australopithecines, have several variations on a theme: walking upright. There are varied changes as australopithecines approach the genus Homo. These changes occurred in the spine, legs, pelvis, and feet, and changes are also in the cranium, arms and hands, but these are features that may have occurred simultaneously with bipedalism. Several analyses of Australopithecus afarensis, specifically specimen A.L. 288-1 ("Lucy"), have shown that the skeletal changes are intermediate between apes and humans. Force plate analyses are used to determine if the gait pattern of humans resembles that of apes, and if it is a likely development pattern. The results of both these analyses will give insight into how modern humans developed bipedalism. Introduction Bipedalism is classified as movement of the post-cranial body in a vertical position, with the lower limbs shifting as an inverted pendulum, progressing forward. Simply, it is upright walking. Several theories have addressed why bipedalism evolved in hominids, with some unlikely ideas taking hold throughout the history of the issue. Other theories are more likely, but all lack the same characteristic: answering how bipedalism developed.
    [Show full text]
  • Anthro Notes : National Museum of Natural History Bulletin for Teachers
    LUCY,UPATREE? Also, they argue, at least some of the A. afarensis hominids, especially the smaller ones like Lucy, no doubt slept, Paleoanthropologists no longer ques- hid, and fed in trees enough of the tion that Lucy, a 3 1/2 foot hominid time so that we can recognize some female with a chimp- sized brain, walked arboreal features in their anatomy. on two legs in Ethiopia about 3.5 million years ago. Neither do they argue that Susman and Stern presented their the anatomy of Lucy's species, Australo - evidence and analysis in an extensive pithecus afarensis , is fully modern; all article in the Journal of Physical agree it is a "mosaic of human-like and Anthropology (March 1983) , and at an ape-like features." No one seriously exciting and often boisterous confer- disputes that bipedal ism was more impor- ence in April. The conference, held tant to their lifestyle than for any non- at the Institute of Human Origins in human primate, living or dead. However, Berkeley, was directed by Donald C. Lucy's discoverers, Donald C. Johanson Johanson, founder of the Institute. and Tim White, claim that the bipedalism There the different factions met to seen in A. afarensis differs insignifi- examine the bones and thrash out their cantly from that of modern humans. Other many different views about two con- scientists disagree. troversies: 1) When did bipedalism begin and to what extent was Lucy Recently two noted anatomists from bipedal? 2) Did A. afarensis make the State University of New York at Stony the footprints at Laetoli or did Brook, Jack Stern and Randall L.
    [Show full text]
  • Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia Chris Lemke College of Dupage
    ESSAI Volume 7 Article 31 4-1-2010 Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia Chris Lemke College of DuPage Follow this and additional works at: http://dc.cod.edu/essai Recommended Citation Lemke, Chris (2009) "Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia," ESSAI: Vol. 7, Article 31. Available at: http://dc.cod.edu/essai/vol7/iss1/31 This Selection is brought to you for free and open access by the College Publications at [email protected].. It has been accepted for inclusion in ESSAI by an authorized administrator of [email protected].. For more information, please contact [email protected]. Lemke: Identity of Hominid Skulls Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia by Chris Lemke (Honors Biology 1151) ABSTRACT ecently, three fully intact hominid skulls have been found in the Afar Region of Ethiopia. Objectives were to date the skulls using Uranium-235, and to identify each of the skulls. RUranium-235 dating indicated skulls A and B to be 2.9 million years old, and skull C to be 1.7 million years old. Each skull was properly identified using existing fossil data. The two oldest skulls were found to be Australopithecus afarensis, and A. africanus. The younger skull was identified as Homo habilis. A discrepancy was found in the measured cranial capacity data against existing data. Due to condition of the newly found fossils, the most likely explanation for the discrepancy is inaccuracy of existing fossil data due to incomplete and fragmented specimens, or that the skulls in question were representative of a juvenile hominid.
    [Show full text]
  • The Reflection of an Ape an Aquatic Approach to Human Evolution
    The Reflection of an Ape An Aquatic Approach to Human Evolution A thesis submitted to the Miami University Honors Program in partial fulfillment of the requirements for University Honors with Distinction by Erica Kempf December 2006 Oxord, Ohio Acknowledgements There are a number of people I would like to thank for their help in the production of this story. Linda Marchant was my advisor and provided invaluable data, advice, support, and motivation during this venture. Lynn and Greg Kempf offered helpful feedback throughout, but especially during the early stages of writing. Mary Cayton and Scott Suarez kindly agreed to read the last draft of my project, and gave me final grammatical suggestions to further polish my final copy. I am also grateful to the people whose enthusiasm and moral support throughout the long process of writing this story kept me going: Amanda Zorn, Kait Jones, Ali Wolkin, Ashley Piening, Lindsay Good, Rachel Mount and Jamie Eckert. Special thanks also go to Randy Fiedler for the initial idea to begin this work and for his help in getting started. Table of Contents Introduction viii Map x Kinship Chart xi 1 Meer 1 2 Natte 13 3 Bain 18 4 Welle 22 5 Etang 28 6 Praia 34 7 Lago 39 8 Samman 43 9 Rio 47 10 Alga 51 11 Gens 56 Works Consulted 59 Introduction The study of how humans have come to be what we are has fascinated us for as long as we have written such things down, and for countless generations before that through oral histories. Every human culture has some type of creation myth, a tale of how people came to be on Earth, ranging from molded mud to thrown rocks to drops of deity’s blood and nearly everything in between.
    [Show full text]
  • {Download PDF} from Lucy to Language Revised, Updated, And
    FROM LUCY TO LANGUAGE REVISED, UPDATED, AND EXPANDED 1ST EDITION PDF, EPUB, EBOOK Donald C Johanson | 9780743280648 | | | | | From Lucy to Language Revised, Updated, and Expanded 1st edition PDF Book In this section the authors provide answers to the basics -- "What are our closest living relatives? Instead, the hominid fossil record suggests that our ancestry is better thought of as a bush, with the branches representing a number of bipedal species that evolved along different evolutionary lines. Evidence for Bipedalism Wren rated it really liked it Sep 19, This discovery prompted a complete reevaluation of previous evidence for human origins. The paleoanthropologist one who studies ancient humans works closely with scientific colleagues to raise funding to support field projects, with a primary expectation being the recovery of the fossilized remains of our ancestors. Like no species before us, we now seem poised to control vast parts of the planet and its life. The Early Human Fossil Record6. In the years since this dramatic discovery Johanson has continued to sco In in a remote region of Ethiopia, Donald Johanson, then one of America's most promising young paleoanthropologists, discovered "Lucy", the oldest, best preserved skeleton of any erect-walking human ever found. In Part II the authors profile over fifty of the most significant early human fossils ever found. In Part II the authors profile over fifty of the most significant early human fossils ever found. Thank you for signing up, fellow book lover! More books from this author: Donald Johanson. It is a combination of the vital experience of field work and the intellectual rigor of primary research.
    [Show full text]
  • The Correlated History of Social Organization, Morality, and Religion
    Chapter 5 The Correlated History of Social Organization, Morality, and Religion David C. Lahti Abstract Morality and religion have evolutionary and cultural roots in the social behavior of our ancestors . Fundamental precursors and major features of morality and religion appear to have changed gradually in concert with social transitions in our history. These correlated changes involve trends toward increased breadth and complexity of social interaction, leading to a stepwise extension of the scope of human sympathies to more inclusive social categories, and eventually the universal- ization of moral and religious concepts, practices, and explanations. These changes can be integrated provisionally into an eight-stage model of human social history, beginning with nepotism and dominance that are characteristic of many social mam- mals, and culminating in the intellectual ability and (sometimes) social freedom of modern human individuals to examine moral and religious conventions, to modify or reject them, and even to propose new ones. 5.1 Introduction In the last 2 million years, several unique traits have evolved in the human lineage: extraordinary intelligence, an unprecedented capacity for cultural transmission of ideas, morality, and religion. These traits are unlikely to have arisen by coincidence in the same species over the same period of time. In fact, evolutionary biologists have recognized important functional relationships between these traits (Alexander 1979). If a consensus is emerging as to the evolution of these features of mod- ern humans, perhaps it can be encapsulated as follows: human intelligence evolved as a social tool, facilitating cooperation within groups in order to more effectively compete between groups; the ensuing intellectual arms race selected for rapid cul- tural innovation and transmission of ideas; cooperative norms within social groups were formalized into the institution of morality; and religion grew out of obedience D.C.
    [Show full text]
  • Lucy: Ethiopia's Star Skeleton
    LESSON 4 Lesson Plans Lucy: Ethiopia’s Star Skeleton Context: Lucy, the skeleton of an early human ancestor, Australopithecus afarensis, was found in the Western Afar Rift, Ethiopia, in Africa. The archaeologists who found Lucy’s remains named her after a popular song. Annotations and Notes How did one of Ethiopia’s most famous “residents” come to be fossil: remains or traces of named after a Beatles’ song? It all began on November 30, 1974. It an organism turned to stone started out the same as any other day at Hadar, an archaeological by geochemical processes site in Ethiopia. Paleontologists Tom Gray and Donald Johanson surveying: an act of were exploring an area where they had found fossils before. As measuring and examining an they walked along, surveying the area, Johanson happened to area of land notice a small, broken piece of bone sticking out of the ground. As preserve: to keep he examined it, Johanson realized that the bone was anatomically (something) in its original similar to a human bone. As the two men continued to search state or in good condition the area, they realized that they had found about 40 percent of a geologist: a person who skeleton, and one that was very well preserved. studies rocks, layers of soil, etc., in order to learn about When they returned to collect and map the hundreds of pieces of the history of the Earth and the skeleton, a team of geologists and paleontologists realized its life that these bones belonged to a hominid that was approximately paleontologist: a person 3.18 million years old and, based on the size of the bones, female.
    [Show full text]
  • The Characteristics and Chronology of the Earliest Acheulean at Konso, Ethiopia
    The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia Yonas Beyenea,b, Shigehiro Katohc, Giday WoldeGabrield, William K. Harte, Kozo Utof, Masafumi Sudog, Megumi Kondoh, Masayuki Hyodoi, Paul R. Rennej,k, Gen Suwal,1, and Berhane Asfawm,1 aAssociation for Research and Conservation of Culture (A.R.C.C.), Awassa, Ethiopia; bFrench Center for Ethiopian Studies, Addis Ababa, Ethiopia; cDivision of Natural History, Hyogo Museum of Nature and Human Activities, Yayoigaoka 6, Sanda 669-1546, Japan; dEES-6/D462, Los Alamos National Laboratory, Los Alamos, NM 87545; eDepartment of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056; fNational Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8567, Japan; gInstitute of Earth and Environmental Science, University of Potsdam, 14476 Golm, Germany; hLaboratory of Physical Anthropology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan; iResearch Center for Inland Seas, Kobe University, Kobe 657-8501, Japan; jBerkeley Geochronology Center, Berkeley, CA 94709; kDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; lUniversity Museum, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; and mRift Valley Research Service, Addis Ababa, Ethiopia This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2008. Contributed by Berhane Asfaw, December 8, 2012 (sent for review November 30, 2012) The Acheulean technological tradition, characterized by a large carcass processing (13, 14), usually interpreted as a part of an (>10 cm) flake-based component, represents a significant techno- advanced subsistence strategy coincident with or postdating the logical advance over the Oldowan.
    [Show full text]
  • Ardipithecus Kadabba the Middle Awash Series Series Editor Tim White, University of California, Berkeley
    Ardipithecus kadabba The Middle Awash Series Series Editor Tim White, University of California, Berkeley University of California Press Editor Charles R. Crumly Homo erectus: Pleistocene Evidence from the Middle Awash, Ethiopia, edited by W. Henry Gilbert and Berhane Asfaw Ardipithecus kadabba: Late Miocene Evidence from the Middle Awash, Ethiopia, edited by Yohannes Haile-Selassie and Giday WoldeGabriel Ardipithecus kadahba Late Miocene Evidence from the Middle Awash, Ethiopia EDITED BY YOHANNES HAILE-SELASS1E AND GIDAY WOLDEGABRIEL UNIVERSITY OF CALIFORNIA PRESS 'ey Los Angeles University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. The Middle Awash Series, Volume 2 University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England © 2009 by "The Regents of the University of California Library of Congress Cataloging-in-Publication Data Ardipithecus kadabba : late miocene evidence from the Middle Awash, Ethiopia / edited by Yohannes Haile-Selassie, Giday WoldeGabriel. p. cm. — (The Middle Awash series) Includes bibliographical references and index. ISBN 978-0-520-25440-4 (cloth : alk. paper) 1. Ardipithecus kadabba—Ethiopia—Middle Awash. 2. Fossil hominids—Ethiopia—Middle Awash. 3. Human remains (Archaeology)—Ethiopia—Middle Awash. 4. Paleoanthropology— Ethiopia—Middle Awash. 5. Middle Awash (Ethiopia)—Antiquities. I. Haile-Selassie, Yohannes, 1961- II. WoldeGabriel, Giday. GN282.73.A73 2008 569.90963— 2008004004 Manufactured in the United States 16 15 14 13 12 11 10 09 10 987654321 The paper used in this publication meets the minimum requirements of ANSI/NISO Z39.48-1992 (R 1997) (Permanence of Paper).
    [Show full text]
  • Australopithecus Afarensis: Lucy and Her Relatives Her Relatives Were Very Early Forms of Humans
    Australopithecus Afarensis: Lucy and her Relatives her relatives were very early forms of humans. One discovery about Lucy was In 1974, an American paleoanthropologist (studies ancient peoples) ​ named Donald Johanson discovered a partial skeleton while searching especially exciting. By studying her for artifacts under a hot African sun. skeleton, scientists found out that she After careful study, Johanson determined that the bones had come was a biped, which means she had the from a female hominid who had lived more than 3 million years ago. ability to walk on two feet. This gave She is one of the earliest hominids ever discovered. Johanson Lucy and her relatives many advantages nicknamed her “Lucy.” compared with animals such as gorillas An anthropologist in Africa called the earliest known group of and chimpanzees. With their hands free, hominids Australopithecus (aws-tray-loh-PIH-thuh-kuhs), a Latin word the hominids could gather and carry ​ ​ meaning “southern ape.” Donald Johanson called Lucy's group food more easily. They could also use Australopithecus Afarensis. The second part of this name refers to the their hands to defend themselves and ​ Afar Triangle, the part of Africa where Lucy was found. their children. Through their studies of Lucy, Scientists have learned a lot about This biped trait was one key way in early hominids. By assembling her bones, they know something about which Lucy resembled us. But in other what she looked like. Lucy was short compared with humans today – ways, hominids like Lucy were quite between 3 and 4 feet tall. She had a mix of ape and human features.
    [Show full text]