The Reflection of an Ape an Aquatic Approach to Human Evolution

Total Page:16

File Type:pdf, Size:1020Kb

The Reflection of an Ape an Aquatic Approach to Human Evolution The Reflection of an Ape An Aquatic Approach to Human Evolution A thesis submitted to the Miami University Honors Program in partial fulfillment of the requirements for University Honors with Distinction by Erica Kempf December 2006 Oxord, Ohio Acknowledgements There are a number of people I would like to thank for their help in the production of this story. Linda Marchant was my advisor and provided invaluable data, advice, support, and motivation during this venture. Lynn and Greg Kempf offered helpful feedback throughout, but especially during the early stages of writing. Mary Cayton and Scott Suarez kindly agreed to read the last draft of my project, and gave me final grammatical suggestions to further polish my final copy. I am also grateful to the people whose enthusiasm and moral support throughout the long process of writing this story kept me going: Amanda Zorn, Kait Jones, Ali Wolkin, Ashley Piening, Lindsay Good, Rachel Mount and Jamie Eckert. Special thanks also go to Randy Fiedler for the initial idea to begin this work and for his help in getting started. Table of Contents Introduction viii Map x Kinship Chart xi 1 Meer 1 2 Natte 13 3 Bain 18 4 Welle 22 5 Etang 28 6 Praia 34 7 Lago 39 8 Samman 43 9 Rio 47 10 Alga 51 11 Gens 56 Works Consulted 59 Introduction The study of how humans have come to be what we are has fascinated us for as long as we have written such things down, and for countless generations before that through oral histories. Every human culture has some type of creation myth, a tale of how people came to be on Earth, ranging from molded mud to thrown rocks to drops of deity’s blood and nearly everything in between. When human fossils were first discovered, science offered its own explanations, which have been corrected and fine-tuned with each new discovery. Charles Darwin provided a mechanism for change over time, natural selection. Gregor Mendel showed how parents passed on genetic information to their offspring via alleles. James Watson and Francis Crick discovered the structure of DNA. The Leakey family discovered and analyzed early human ancestor fossils in Africa. Jane Goodall spent decades studying the behavior of chimpanzees for clues about what makes us similar to and different from our closest living relatives. All of these people, and many others, have allowed for huge leaps forward in our scientific understanding of how humans have become what we are today, and their contributions are indispensable. However, as they are probably the first to admit, there are still many unanswered questions about the evolution of humankind. DNA analysis provides valuable information about relationships between animals but has a limited ability to predict behavior. Paleontology has provided a wealth of knowledge about our ancestral anatomy, behavior, and environment, but only a limited number of bones fossilize and are discovered. Advances in these fields will continue to uncover new knowledge and lead to a greater understanding of ourselves, but we are not there yet. One of the areas of most uncertainty is the time directly following the split of humans from the last common ancestor between chimpanzees and humans. What was it that made one group of African apes so different from all the others? A variety of explanations have been proposed, but none are accepted as the definitive cause. These theories range from changes in environment to changes in social structure to meat eating, and all have their advantages and drawbacks. In this story, I have chosen one theory, nicknamed the aquatic ape theory, for explaining what may have caused this divergence of humans from the other apes. This aquatic theory is certainly not the only theory of why and how this change could have taken place, and perhaps is not even the most plausible explanation, but it does offer an explanation for several traits unique to humans. The story presented here follows one band of creatures as they progress from the last common ancestor between humans and chimpanzees until they are firmly established as a hominin that walked the plains of Africa, striding on two feet. The time span, nearly five million years, is almost incomprehensible for humans who live such a short time comparatively. To ensure that readers (and the writer) are not overwhelmed by the sheer amount of time in question, the characters of this story will remain the same throughout this vast expanse. The storyline will seem to pass only through one generation in the life of this band, although obviously the same individual band members would not have survived for five million years. Similarly, the snapshots of life presented in each chapter are not meant to represent literal days or weeks, but rather a progression of what could have happened in the several hundred thousand years between each chapter. Sometimes new behaviors are adopted with incredible rapidity, and then long periods of time pass with little change. Sometimes, though, it takes generations for a new behavior to become established and perfected. New ways to do things are often discovered by chance, and the scenarios described in the following pages are only educated guesses about how certain behaviors might have first been established based on modern animal behavior. Ultimately this is a “what if” story. What if the aquatic ape hypothesis were true? What would have driven our ancestors to spend a significant amount of time in the water? How would they have acted while they were there? What made them return exclusively to dry land again? The introduction to each chapter presents scientific data relevant to aspects of each chapter, and the bibliography at the end provides the scientific sources the author used in predicting the band’s behaviors and physical characteristics. These scientific sections are meant to offer support to this hypothesis and resources for curious readers, rather than to offer undisputed proof that any of the following events occurred. Contemporary Map of the Afar Region in Ethiopia Kinship Chart Meer Alga Etang Welle Natte Rio Etang Samman Teich Furt Gens The Reflection of an Ape An Aquatic Approach to Human Evolution A thesis submitted to the Miami University Honors Program in partial fulfillment of the requirements for University Honors with Distinction by Erica Kempf December 2006 Oxord, Ohio Acknowledgements There are a number of people I would like to thank for their help in the production of this story. Linda Marchant was my advisor and provided invaluable data, advice, support, and motivation during this venture. Lynn and Greg Kempf offered helpful feedback throughout, but especially during the early stages of writing. Mary Cayton and Scott Suarez kindly agreed to read the last draft of my project, and gave me final grammatical suggestions to further polish my final copy. I am also grateful to the people whose enthusiasm and moral support throughout the long process of writing this story kept me going: Amanda Zorn, Kait Jones, Ali Wolkin, Ashley Piening, Lindsay Good, Rachel Mount and Jamie Eckert. Special thanks go to Randy Fiedler for the initial idea to begin this work and for his help in getting started. Table of Contents Introduction ii Map iv Kinship Chart v 1 Meer 1 2 Natte 11 3 Bain 19 4 Welle 26 5 Etang 35 6 Praia 44 7 Lago 52 8 Samman 59 9 Rio 66 10 Alga 72 11 Gens 80 Works Consulted 85 1 Danakil Alps (Afar, Ethiopia) 9 Million Years Ago Meer (Sea; German) The Afar region is located in East Africa, along the coast of the Red Sea. Today huge salt plains cover this area. The local people collect and carry out this salt for sale; salt is the only cash crop in this otherwise inhospitable region. The modern day salt plains of Afar are all that is left of a vast inland sea that once covered the region. Around 9 million years ago the three geological rifts that converge in the Afar triangle shifted and the Red Sea flowed into Afar. Later, another shift occurred, blocking the sea’s retreat and turning Afar into a huge saltwater lake. The lake slowly evaporated over millions of years and left thick crusts of salt as its only remnants. A similar process is occurring in the Dead Sea today, which is steadily increasing in salinity as it evaporates. Around the same time in Africa, an ape lineage split. This ape lineage is sometimes referred to as the last common ancestor, or LCA. The modern genera of Pan (chimpanzees) and Homo (humans) are the living descendants of this split. The time estimation for this split is based on our understanding of the molecular clock and the accumulation of mutations in the DNA of the two species since the divergence. An analysis of chimpanzee and human DNA suggests that this event occurred between 7 and 9 million years ago. It is difficult to determine from the array of fossil evidence exactly which fossils belong to the LCA. These fossils may not have yet been discovered or preserved so that they may be discovered at all. However, modern day animals may offer clues as to the nature of these ancestral apes. Deciding which animals make the best model for the LCA is based on a variety of fossil and behavioral data. It is assumed that the LCA more closely resembled Pan than Homo because it is more likely that uniquely human traits such as naked skin, standing upright and large brains evolved after the split between 2 humans and chimpanzees rather than before the split. The alternative explanation would be that the LCA evolved these human traits and then the chimpanzee line evolved back to the ancestral condition, which involves more steps and is refuted by the fossil evidence.
Recommended publications
  • Defining the Genus Homo
    Defining the Genus Homo Mark Collard and Bernard Wood Contents Introduction ..................................................................................... 2108 Changing Interpretations of Genus Homo ..................................................... 2109 Is Genus Homo a “Good” Genus? ............................................................. 2114 Updating Wood and Collard’s (1999) Review of Genus Homo .............................. 2126 Conclusion ...................................................................................... 2137 Cross-References ............................................................................... 2138 References ...................................................................................... 2138 Abstract The definition of the genus Homo is an important but under-researched topic. In this chapter we show that interpretations of Homo have changed greatly over the last 150 years as a result of the incorporation of new fossil species, the discovery of fossil evidence that changed our perceptions of its component species, and reassessments of the functional capabilities of species previously allocated to Homo. We also show that these changes have been made in an ad hoc fashion. Criteria for recognizing fossil specimens of Homo have been outlined on a M. Collard (*) Human Evolutionary Studies Program and Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada Department of Archaeology, University of Aberdeen, Aberdeen, UK e-mail: [email protected] B. Wood Center for the Advanced
    [Show full text]
  • Homo Habilis
    COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo­ ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean­ derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop­ LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect­ ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field­ work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included.
    [Show full text]
  • Our Precarious Earth and Its Biosphere
    I. The Environment 1 The Earth’s Biosphere: Our Life Support System Our common shared biosphere is our planet’s life support system, capturing light via photosynthesis, conserving energy and matter, and obeying the basic laws of physics and thermodynamics. These laws are fundamental, governing all occurrences in the universe. All biological systems must abide by them. We must function within their confines. In spite of the universality of these laws, problems arise because of humans and their activities. There are simply too many of us for our planet. We are consuming too many irreplaceable resources and causing long-lasting planetary damage. This last problem is tremendously enhanced by human greed and a disregard by many for the biosphere. When our numbers were much smaller, our impact could be absorbed. This is not so today. Because we operate within the confines of the universal laws, we cannot continue to squander resources as we have in the past. Consider the following question: How much damage is caused to the natural environment in order to make a profit from the sale of a consumable item? Consider that many of the consumables produced are dispensable and often of minimal value. Realize that valuable resources must be used for their production. Moreover, these products ultimately become waste that must be disposed of, often in a manner that harms the environment. Why allow the continuation of activities that damage our common life support system? We already know that much of this damage cannot be repaired without a human population decrease. Why allow an increase in our population, recognizing that the consequence will be immense human suffering? Why allow resource consumption, pollution and global warming when we know that their continuance will prevent us from solving global problems and meeting the immense challenges that lie before us? We behave as though we have no regard for future generations.
    [Show full text]
  • Hands-On Human Evolution: a Laboratory Based Approach
    Hands-on Human Evolution: A Laboratory Based Approach Developed by Margarita Hernandez Center for Precollegiate Education and Training Author: Margarita Hernandez Curriculum Team: Julie Bokor, Sven Engling A huge thank you to….. Contents: 4. Author’s note 5. Introduction 6. Tips about the curriculum 8. Lesson Summaries 9. Lesson Sequencing Guide 10. Vocabulary 11. Next Generation Sunshine State Standards- Science 12. Background information 13. Lessons 122. Resources 123. Content Assessment 129. Content Area Expert Evaluation 131. Teacher Feedback Form 134. Student Feedback Form Lesson 1: Hominid Evolution Lab 19. Lesson 1 . Student Lab Pages . Student Lab Key . Human Evolution Phylogeny . Lab Station Numbers . Skeletal Pictures Lesson 2: Chromosomal Comparison Lab 48. Lesson 2 . Student Activity Pages . Student Lab Key Lesson 3: Naledi Jigsaw 77. Lesson 3 Author’s note Introduction Page The validity and importance of the theory of biological evolution runs strong throughout the topic of biology. Evolution serves as a foundation to many biological concepts by tying together the different tenants of biology, like ecology, anatomy, genetics, zoology, and taxonomy. It is for this reason that evolution plays a prominent role in the state and national standards and deserves thorough coverage in a classroom. A prime example of evolution can be seen in our own ancestral history, and this unit provides students with an excellent opportunity to consider the multiple lines of evidence that support hominid evolution. By allowing students the chance to uncover the supporting evidence for evolution themselves, they discover the ways the theory of evolution is supported by multiple sources. It is our hope that the opportunity to handle our ancestors’ bone casts and examine real molecular data, in an inquiry based environment, will pique the interest of students, ultimately leading them to conclude that the evidence they have gathered thoroughly supports the theory of evolution.
    [Show full text]
  • Neither Chimpanzee Nor Human, Ardipithecus Reveals the Surprising Ancestry of Both Tim D
    SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both Tim D. Whitea,1, C. Owen Lovejoyb, Berhane Asfawc, Joshua P. Carlsona, and Gen Suwad,1 aDepartment of Integrative Biology, Human Evolution Research Center, University of California, Berkeley, CA 94720; bDepartment of Anthropology, School of Biomedical Sciences, Kent State University, Kent, OH 44242–0001; cRift Valley Research Service, Addis Ababa, Ethiopia; and dThe University Museum, The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033, Japan Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved September 10, 2014 (received for review April 25, 2014) Australopithecus fossils were regularly interpreted during the late 20th century in a framework that used living African apes, especially chimpanzees, as proxies for the immediate ancestors of the human clade. Such projection is now largely nullified by the discovery of Ardipithecus. In the context of accumulating evidence from genetics, developmental biology, anatomy, ecology, biogeography, and geology, Ardipithecus alters perspectives on how our earliest hominid ancestors—and our closest living relatives—evolved. human evolution | Australopithecus | hominid | Ethiopia “...the stock whence two or more species have chimpanzees, can serve as adequate repre- (5). Indeed, a widely used textbook still pro- sprung, need in no respect be intermediate sentations of the ancestral past. claims that, “Overall, Au. afarensis seems very between those species.” much like a missing link between the living Background T. H. Huxley, 1860 (1) Africanapesandlaterhomininsinitsdental, ’ Darwin s human evolution scenario attemp- cranial, and skeletal morphology” (6). Charles Darwin famously suggested that ted to explain hominid tool use, bipedality, Australopithecus can no longer be legiti- Africa was humanity’s most probable birth enlarged brains, and reduced canine teeth (2).
    [Show full text]
  • 'Lucy' Fossil Found
    Published online 20 September 2006 | Nature | doi:10.1038/news060918-5 News Little 'Lucy' fossil found Toddler hominin has arms for swinging and legs for walking. Rex Dalton The 3.3-million-year-old bones of a female toddler from Ethiopia are telling scientists a story about the route human ancestors took from the trees to the ground. In today's issue of Nature, an Ethiopian-led international team reports the discovery of a juvenile skeleton of the species commonly known as 'Lucy', or Australopithecus afarensis.1,2 The researchers have named her Selam, after an Ethiopian word for 'peace'. The specimen, which is the oldest and most complete juvenile of a human relative ever found, has features that stand as striking examples of part-way evolution between primitive apes and modern humans. Although many other samples of A. afarensis have been found before, this is the first one reported to come complete with a whole shoulder-blade bone (scapula). In modern humans the scapula has a ridge running horizontally across the top of the bone; in apes the scapula's ridge reaches further down the Little Salem is the most back, where it can help to throw more muscle into arm action, as would be needed to swing from trees. ancient toddler ever found. In the young A. afarensis, the scapula looks to be part-way between. Zeresenay Alemseged and Copyright Authority for Research and Conservation "The animal was losing its capacity to be arboreal — heading right toward being human," says of Cultrual Heritages anthropologist Owen Lovejoy of Kent State University in Ohio.
    [Show full text]
  • Mechanics of Bipedalism: an Exploration of Skeletal Morphology and Force Plate Anaylsis Erin Forse May 04, 2007 a Senior Thesis
    MECHANICS OF BIPEDALISM: AN EXPLORATION OF SKELETAL MORPHOLOGY AND FORCE PLATE ANAYLSIS ERIN FORSE MAY 04, 2007 A SENIOR THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF ARTS IN ARCHAEOLOGICAL STUDIES UNIVERSITY OF WISCONSIN- LA CROSSE Abstract There are several theories on how humans learned to walk, and while these all address the adaptations needed for walking, none adequately describes how our early ancestors developed the mechanism to walk. Our earliest recognizable relatives, the australopithecines, have several variations on a theme: walking upright. There are varied changes as australopithecines approach the genus Homo. These changes occurred in the spine, legs, pelvis, and feet, and changes are also in the cranium, arms and hands, but these are features that may have occurred simultaneously with bipedalism. Several analyses of Australopithecus afarensis, specifically specimen A.L. 288-1 ("Lucy"), have shown that the skeletal changes are intermediate between apes and humans. Force plate analyses are used to determine if the gait pattern of humans resembles that of apes, and if it is a likely development pattern. The results of both these analyses will give insight into how modern humans developed bipedalism. Introduction Bipedalism is classified as movement of the post-cranial body in a vertical position, with the lower limbs shifting as an inverted pendulum, progressing forward. Simply, it is upright walking. Several theories have addressed why bipedalism evolved in hominids, with some unlikely ideas taking hold throughout the history of the issue. Other theories are more likely, but all lack the same characteristic: answering how bipedalism developed.
    [Show full text]
  • Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years.
    [Show full text]
  • Anthro Notes : National Museum of Natural History Bulletin for Teachers
    LUCY,UPATREE? Also, they argue, at least some of the A. afarensis hominids, especially the smaller ones like Lucy, no doubt slept, Paleoanthropologists no longer ques- hid, and fed in trees enough of the tion that Lucy, a 3 1/2 foot hominid time so that we can recognize some female with a chimp- sized brain, walked arboreal features in their anatomy. on two legs in Ethiopia about 3.5 million years ago. Neither do they argue that Susman and Stern presented their the anatomy of Lucy's species, Australo - evidence and analysis in an extensive pithecus afarensis , is fully modern; all article in the Journal of Physical agree it is a "mosaic of human-like and Anthropology (March 1983) , and at an ape-like features." No one seriously exciting and often boisterous confer- disputes that bipedal ism was more impor- ence in April. The conference, held tant to their lifestyle than for any non- at the Institute of Human Origins in human primate, living or dead. However, Berkeley, was directed by Donald C. Lucy's discoverers, Donald C. Johanson Johanson, founder of the Institute. and Tim White, claim that the bipedalism There the different factions met to seen in A. afarensis differs insignifi- examine the bones and thrash out their cantly from that of modern humans. Other many different views about two con- scientists disagree. troversies: 1) When did bipedalism begin and to what extent was Lucy Recently two noted anatomists from bipedal? 2) Did A. afarensis make the State University of New York at Stony the footprints at Laetoli or did Brook, Jack Stern and Randall L.
    [Show full text]
  • What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
    COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers.
    [Show full text]
  • Linnaean Taxonomic Classification Nomenclature All Biologists Use a Single Naming System That Essentially Follows the Practice O
    Linnaean Taxonomic Classification Nomenclature All biologists use a single naming system that essentially follows the practice of Linnaeus. Taxa are always given Latin names (or Latinized ones). This is a label and not a definition. (Homo sapiens – wise man) The name of a species always consists of two words – the genus (generic) name followed by the species (specific) name. Grammatically, the genus is a noun and the species is adjective or another noun in opposition. The genus name is always capitalized and italicized. The species name is italicized only. If you used the genus name already you may use the first letter followed by a period. Homo sapiens, H. sapiens In the rare cases where a subgenus name is used it is capitalized, italicized and put in parentheses after the genus. Australopithecus (Paranthropus) robustus If a subspecies name is used it comes at the end and is italicized only. E.G. Homo sapiens sapiens Categories above the genus level are capitalized but not italicized. They generally have endings that show the level of classification. ini for tribe (Infraorder), oidea for superfamily, idae for family. Above the superfamily the only rule is that the name must be Latin or Latinized. The Latin names are often anglicized by dropping the ending and it is not normally capitalized. Hominidae – hominid. Technically the full name of the taxon should include the name of its inventor and the date but this is only done if the discussion is concerning the taxonomy of the name. Homo sapiens Linnaeus, 1758 Ideally, a taxon should have only one name, but some have been given more than one and there is a disagreement over which one has priority or which one is better.
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]