Ardipithecus Kadabba the Middle Awash Series Series Editor Tim White, University of California, Berkeley

Total Page:16

File Type:pdf, Size:1020Kb

Ardipithecus Kadabba the Middle Awash Series Series Editor Tim White, University of California, Berkeley Ardipithecus kadabba The Middle Awash Series Series Editor Tim White, University of California, Berkeley University of California Press Editor Charles R. Crumly Homo erectus: Pleistocene Evidence from the Middle Awash, Ethiopia, edited by W. Henry Gilbert and Berhane Asfaw Ardipithecus kadabba: Late Miocene Evidence from the Middle Awash, Ethiopia, edited by Yohannes Haile-Selassie and Giday WoldeGabriel Ardipithecus kadahba Late Miocene Evidence from the Middle Awash, Ethiopia EDITED BY YOHANNES HAILE-SELASS1E AND GIDAY WOLDEGABRIEL UNIVERSITY OF CALIFORNIA PRESS 'ey Los Angeles University of California Press, one of the most distinguished university presses in the United States, enriches lives around the world by advancing scholarship in the humanities, social sciences, and natural sciences. Its activities are supported by the UC Press Foundation and by philanthropic contributions from individuals and institutions. For more information, visit www.ucpress.edu. The Middle Awash Series, Volume 2 University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England © 2009 by "The Regents of the University of California Library of Congress Cataloging-in-Publication Data Ardipithecus kadabba : late miocene evidence from the Middle Awash, Ethiopia / edited by Yohannes Haile-Selassie, Giday WoldeGabriel. p. cm. — (The Middle Awash series) Includes bibliographical references and index. ISBN 978-0-520-25440-4 (cloth : alk. paper) 1. Ardipithecus kadabba—Ethiopia—Middle Awash. 2. Fossil hominids—Ethiopia—Middle Awash. 3. Human remains (Archaeology)—Ethiopia—Middle Awash. 4. Paleoanthropology— Ethiopia—Middle Awash. 5. Middle Awash (Ethiopia)—Antiquities. I. Haile-Selassie, Yohannes, 1961- II. WoldeGabriel, Giday. GN282.73.A73 2008 569.90963— 2008004004 Manufactured in the United States 16 15 14 13 12 11 10 09 10 987654321 The paper used in this publication meets the minimum requirements of ANSI/NISO Z39.48-1992 (R 1997) (Permanence of Paper). a Cover illustration: Lingual view of ASK 3/400, Ardipithecus kadabba right upper canine from Asa Koma. Photograph courtesy of David Brill © copyright 2003. .
Recommended publications
  • The Pliocene Hominin Diversity Conundrum: Do More Fossils
    SPECIAL FEATURE: PERSPECTIVE The Pliocene hominin diversity conundrum: Do more fossils mean less clarity? SPECIAL FEATURE: PERSPECTIVE Yohannes Haile-Selassiea,b,1, Stephanie M. Melilloc, and Denise F. Sud Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved January 7, 2016 (received for review November 6, 2015) Recent discoveries of multiple middle Pliocene hominins have raised the possibility that early hominins were as speciose as later hominins. However, debates continue to arise around the validity of most of these new taxa, largely based on poor preservation of holotype specimens, small sample size, or the lack of evidence for ecological diversity. A closer look at the currently available fossil evidence from Ethiopia, Kenya, and Chad indicate that Australopithecus afarensis was not the only hominin species during the middle Pliocene, and that there were other species clearly distinguishable from it by their locomotor adaptation and diet. Although there is no doubt that the presence of multiple species during the middle Pliocene opens new windows into our evolutionary past, it also complicates our understanding of early hominin taxonomy and phylogenetic relationships. hominin diversity | Australopithecus | Kenyanthropus | Pliocene | ecological diversity If one looks back over the controversies of human When Australopithecus bahrelghazali was named evolution, they have one element in common: new in 1995 based on an approximately 3.5-Ma partial discoveries, theories, methods came along which “ ” mandible from Chad (12), it was quickly dismissed as no one in the controversy anticipated. The facts – changed, and consequently people were not right a geographic variant of Au. afarensis (13 15). The or wrong in any simple way.
    [Show full text]
  • The Characteristics and Chronology of the Earliest Acheulean at Konso, Ethiopia
    The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia Yonas Beyenea,b, Shigehiro Katohc, Giday WoldeGabrield, William K. Harte, Kozo Utof, Masafumi Sudog, Megumi Kondoh, Masayuki Hyodoi, Paul R. Rennej,k, Gen Suwal,1, and Berhane Asfawm,1 aAssociation for Research and Conservation of Culture (A.R.C.C.), Awassa, Ethiopia; bFrench Center for Ethiopian Studies, Addis Ababa, Ethiopia; cDivision of Natural History, Hyogo Museum of Nature and Human Activities, Yayoigaoka 6, Sanda 669-1546, Japan; dEES-6/D462, Los Alamos National Laboratory, Los Alamos, NM 87545; eDepartment of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056; fNational Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba 305-8567, Japan; gInstitute of Earth and Environmental Science, University of Potsdam, 14476 Golm, Germany; hLaboratory of Physical Anthropology, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan; iResearch Center for Inland Seas, Kobe University, Kobe 657-8501, Japan; jBerkeley Geochronology Center, Berkeley, CA 94709; kDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; lUniversity Museum, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; and mRift Valley Research Service, Addis Ababa, Ethiopia This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2008. Contributed by Berhane Asfaw, December 8, 2012 (sent for review November 30, 2012) The Acheulean technological tradition, characterized by a large carcass processing (13, 14), usually interpreted as a part of an (>10 cm) flake-based component, represents a significant techno- advanced subsistence strategy coincident with or postdating the logical advance over the Oldowan.
    [Show full text]
  • The Perspective from Africa
    Anthropogeny: The Perspective from Africa Public Symposium Friday, May 31, 2019 Chairs: Berhane Asfaw, Rift Valley Research Service & Lyn Wadley, University of the Witwatersrand Sponsored by: Center for Academic Research and Training in Anthropogeny (CARTA) With generous support from: The G. Harold and Leila Y. Mathers Charitable Foundation ABSTRACTS Australopithecus in East and South Africa Job Kibii, National Museums of Kenya Australopithecus is a genus of hominins whose evolutionary evidence is confined to the African continent. The genus evolved in eastern and/or southern Africa around 4 million years ago, eventually becoming extinct slightly less than two million years ago. Australopithecus is scientifically accepted as the common ancestor of the Paranthropus and Homo. Scientists recognize five species of Australopithecines; Australopithecus anamensis, A. afarensis, A. africanus, A. garhi, and A. sediba. Their relationship to each other and the earliest form of Homo, Homo habilis, remains controversial due to the sparse fossil record in Africa. There are two main ways of expressing evolutionary relationships: phylogenetic trees and cladograms. This presentation will explore current fossil evidence regarding members of the genus Australopithecus and their phylogenetic and cladistic relationships. The Chad Basin Andossa Likius, University of Moundou (Chad) Until recently, Chad has remained a poorly known country as far as paleontological research, compared to its neighbors on the African continent. But since 1994, the Mission Paléoanthropologique Franco-Chadienne (MPFT) is conducting intensive geological and paleontological surveys in the Djurab Desert. More than 400 Mio-Pliocene fossil sites dated between 3 and 7 million years ago (mya) have been identified. These sites have yielded rich and diverse fossil faunal assemblages of vertebrates, unique in Central Africa.
    [Show full text]
  • Chronostratigraphy of the Miocene–Pliocene Sagantole Formation, Middle Awash Valley, Afar Rift, Ethiopia
    Chronostratigraphy of the Miocene–Pliocene Sagantole Formation, Middle Awash Valley, Afar rift, Ethiopia Paul R. Renne* Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709 and Department of Geology and Geophysics, University of California, Berkeley, California 94720 Giday WoldeGabriel Los Alamos National Laboratory, Los Alamos, New Mexico 87545 William K. Hart Department of Geology, Miami University, Oxford, Ohio 45056 Grant Heiken Los Alamos National Laboratory, Los Alamos, New Mexico 87545 Tim D. White Laboratory for Human Evolutionary Studies, Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California 94720 ABSTRACT 1999). The sediment deposited in these basins is largely volcaniclastic in ori- gin and is interbedded with mafic lava and compositionally bimodal tephra The Sagantole Formation comprises more than 200 m of lacustrine, that are products of intermittent volcanism related to the Afar plume. The alluvial, and volcaniclastic sediments, plus compositionally bimodal Afar and the Main Ethiopian rift, covering an area of ~3.5 × 105 km2,began tephras and basaltic lavas, exposed in a domelike horst named the to form at least by 25 Ma (Moore and Davidson, 1978; Berhe et al., 1987; Central Awash Complex in the southwestern Afar rift of Ethiopia. The WoldeGabriel et al., 1990, 1991, 1992; Ebinger et al., 1993; Yemane et al., Sagantole Formation is widely known for abundant vertebrate faunas, 1999), and thick accumulations of sediment, lava, and tephra have been sub- including the 4.4 Ma primitive hominid Ardipithecus ramidus. New sequently deposited into the subsiding rift basins. In the Middle Awash re- lithostratigraphic data are used to subdivide the Sagantole Formation gion of the southern Afar rift, faulting, uplift, differential subsidence, and ero- into the Kuseralee, Gawto, Haradaso, Aramis, Beidareem, Adgantole, sion have produced windows into one such rift-basin succession.
    [Show full text]
  • Climatic and Environmental Challenges: Learning from the Horn of Africa
    Climatic and Environmental Challenges: Learning from the Horn of Africa David Ambrosetti, Jean-Renaud Boisserie, Deresse Ayenachew and Thomas Guindeuil (dir.) DOI: 10.4000/books.cfee.101 Publisher: Centre français des études éthiopiennes Place of publication: Addis-Abeba Year of publication: 2016 Published on OpenEdition Books: 28 July 2016 Serie: Corne de l’Afrique contemporaine / Contemporary Horn of Africa Electronic ISBN: 9782821873001 http://books.openedition.org Electronic reference AMBROSETTI, David (ed.) ; et al. Climatic and Environmental Challenges: Learning from the Horn of Africa. New edition [online]. Addis-Abeba: Centre français des études éthiopiennes, 2016 (generated 02 octobre 2020). Available on the Internet: <http://books.openedition.org/cfee/101>. ISBN: 9782821873001. DOI: https://doi.org/10.4000/books.cfee.101. This text was automatically generated on 2 October 2020. It is the result of an OCR (optical character recognition) scanning. © Centre français des études éthiopiennes, 2016 Terms of use: http://www.openedition.org/6540 1 In the prospect of the COP21 held in Paris in December 2015, the French Centre for Ethiopian Studies (CFEE) organised a scientific conference on environmental and climatic changes in the horn of Africa, with a decisive financial support of the Institut français (Fonds d’Alembert), Paris. The conference was part of a larger event, called “the Road to Paris” and organised by the French Embassy to Ethiopia and the Horn of Africa Regional Environment Centre and Network (HoA- REC&N), Addis Ababa University, in HoA-REC&N headquarters at Gullele Botanic Gardens, Addis Ababa, from 7 to 9 April 2015. In this event, our first purpose was to set aside from the pressure of short-term and policy- oriented concerns raised by the international bureaucracies and bilateral donors, as to try to explore diverse, cross-disciplinary dimensions related to environmental change in the region in a wider way, wider in time and also wider in the elements observed.
    [Show full text]
  • Late Miocene Hominids from the Middle Awash, Ethiopia
    letters to nature composition of pedogenic carbonate along elevation transects in the southern Great Basin, United seem to represent a single taxon, a new subspecies of Ardipithecus States. Geol. Soc. Am. Bull. 101, 464±475 (1989). (see Methods). 25. Kingdon, J. East African Mammals Vol. IIB (Academic, New York, 1974). 26. Leakey, M. G. et al. Lothagam: a record of faunal change in the Late Miocene of East Africa. J. Vert. The ®rst specimen recovered was the subspeci®c holotype, ALA- Paleontol. 16, 556±570 (1996). VP-2/10, a right mandible with M3. (Note that subscripts indicate Supplementary information is available on Nature's World-Wide Web site lower teeth, superscripts upper teeth.) Four isolated left lower teeth (http://www.nature.com) or as paper copy from the London editorial of®ce of Nature. (I2,LC,P4 and M2) are associated by spatial proximity, colour, perimortem root fracture and wear. The left I2 is metrically and Acknowledgements morphologically comparable to known later hominid incisors and The Middle Awash Project is multinational, interdisciplinary research co-directed by B.A., distinctively narrower than the lateral incisors of chimpanzees (Pan Y. Beyene, J. D. Clark, T. D.W. and G.W.G. The research was supported by the National troglodytes). The P4 has a well developed talonid and a Tome's root Science Foundation and the Institute of Geophysics and Planetary Physics of the rather than the single roots reported for Aramis A. ramidus11. University of California at Los Alamos National Laboratory. Additional contributions The associated lower canine is worn apically and distally.
    [Show full text]
  • Reconstructing Human Evolution: Achievements, Challenges, and Opportunities
    Reconstructing human evolution: Achievements, challenges, and opportunities Bernard Wood1 George Washington University, Washington, DC 20052 This contribution reviews the evidence that has resolved the can then be used as the equivalent of a null hypothesis when branching structure of the higher primate part of the tree of life considering where to place newly discovered fossil great ape taxa. and the substantial body of fossil evidence for human evolution. It considers some of the problems faced by those who try to interpret The Human Fossil Record. The fossil record of the human clade the taxonomy and systematics of the human fossil record. How do consists of fossil evidence for modern humans plus that of all ex- you to tell an early human taxon from one in a closely related clade? tinct taxa that are hypothesized to be more closely related to How do you determine the number of taxa represented in the modern humans than to any other living taxon. Not so long ago human clade? How can homoplasy be recognized and factored into nearly all researchers were comfortable with according the human attempts to recover phylogeny? clade the status of a family, the Hominidae, with the nonhuman extant great apes (i.e., chimpanzees, bonobos, gorillas, and history | hominin orangutans) placed in a separate family, the Pongidae. But given the abundant evidence for a closer relationship between Pan and his contribution begins by considering two achievements rele- Homo than between Pan and Gorilla (see above), many research- Tvant to reconstructing human evolution: resolving the branch- ers have concluded that the human clade should be distinguished ing structure of the higher primate part of the tree of life and the beneath the level of the family in the Linnaean hierarchy.
    [Show full text]
  • From Ardipithecus Ramidus to Homo Sapiens
    36 Duke of Edinburgh Prize to: Gen Suwa Professor and Director, The University Museum, The University of Tokyo for “Human Origins and Evolution: from Ardipithecus ramidus to Homo sapiens” Outline of the work: Prof. Gen Suwa is a biological anthropologist and paleoanthropologist who has considerably contributed to the understanding of human evolution through the discovery and analysis of fossil human remains and associated contextual evidence. His most notable contribution is the elucidation of the earliest stages of human ancestry via the discovery and analysis of the 4.4 million-year (Ma)-old Ardipithecus ramidus and the nearly 6-Ma-old but more fragmentary Ardipithecus kadabba fossils. Other major works include the discovery and naming of the 8-Ma-old African great ape Chororapithecus abyssinicus, the establishment of the timing of the split between the Homo and the robust Australopithecus lineages, the dating of the earliest Acheulean stone tools to 1.75 Ma, and various studies on more recent Pleistocene and Holocene fossil and skeletal materials. Between the 1980s and 1990s, Prof. Suwa has led the comparative analysis of Australopithecus and early Homo, particularly regarding dental fossil records spanning a period between 4 and 1 Ma. Importantly, his work is internationally recognized as the standard for the period between 3 and 2 Ma, which is crucial for the understanding of the emergence of the genus Homo and its subsequent evolutionary trajectories. Suwa’s work on the dentition contributed significantly to the elucidation of the evolution of the earliest Australopithecus species from the more primitive Ardipithecus ramidus by 4.2 Ma, which then largely evolved as a lineage with considerable populational variation and finally split into two clades just after 3 Ma.
    [Show full text]
  • Variability in the Middle Stone Age of Eastern Africa Author(S): Christian A
    Variability in the Middle Stone Age of Eastern Africa Author(s): Christian A. Tryon and J. Tyler Faith Source: Current Anthropology, Vol. 54, No. S8, Alternative Pathways to Complexity: Evolutionary Trajectories in the Middle Paleolithic and Middle Stone Age (December 2013), pp. S234-S254 Published by: The University of Chicago Press on behalf of Wenner-Gren Foundation for Anthropological Research Stable URL: http://www.jstor.org/stable/10.1086/673752 . Accessed: 11/10/2015 19:00 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Wenner-Gren Foundation for Anthropological Research are collaborating with JSTOR to digitize, preserve and extend access to Current Anthropology. http://www.jstor.org This content downloaded from 23.235.32.0 on Sun, 11 Oct 2015 19:00:22 PM All use subject to JSTOR Terms and Conditions S234 Current Anthropology Volume 54, Supplement 8, December 2013 Variability in the Middle Stone Age of Eastern Africa by Christian A. Tryon and J. Tyler Faith CAϩ Online-Only Material: Supplement A Eastern Africa is an important area to study early populations of Homo sapiens because subsets of those populations likely dispersed to Eurasia and subsequently throughout the globe during the Upper Pleistocene.
    [Show full text]
  • The Origin of Humans: the Record from the Afar of Ethiopia
    What is our Real Knowledge about the Human Being Pontifical Academy of Sciences, Scripta Varia 109, Vatican City 2007 www.pas.va/content/dam/accademia/pdf/sv109/sv109-asfaw.pdf THE ORIGIN OF HUMANS: THE RECORD FROM THE AFAR OF ETHIOPIA BERHANE ASFAW I would like to start with just one simple statement. Our own species is anatomically and behaviourally very recent, and cannot be understood or appreciated without taking into account where it came from and the form it evolved from. That is the reason why we need to understand our biolog- ical history. I just want to review the road we had to pass through in our 6 million year biological history. Just to reiterate, evolution is a fact. The rea- son why we say that we are evolved is because of evidence from compara- tive anatomy, molecular biology and fossil evidence. My work is mostly on the fossil evidence. Just to give you a summary, we can classify our six million year biologi- cal history into three chapters (Fig. 1, see page 163). The first chapter, start- ing from the bottom, from the third one, is the chapter of Ardipithecus. That is a very remote group of ancestors that lived from about 6 million years ago to about 4.4 million years ago, according to our knowledge in the fossil record. The second chapter, the Australopithecus era, is the second phase of our biological history. It emerged, from the fossil record as we know it, around 4.1 million years ago and then continued later, the specialised forms continued up to around 1.3 million years ago, overlapping with the third chapter of our history.
    [Show full text]
  • Bones, Stones, and Genes: the Origin of Modern Humans Lecture 4 – Hominid Paleobiology Tim D
    Bones, Stones, and Genes: The Origin of Modern Humans Lecture 4 – Hominid Paleobiology Tim D. White, Ph.D. 1. Start of Lecture 4 (0:00) [ Music ][ANNOUNCER:] From the Howard Hughes Medical Institute...The 2011 Holiday Lectures on Science. This year's lectures, "Bones, Stones, and Genes: The Origin of Modern Humans, " will be given by Dr. John Shea, Professor of Anthropology at Stony Brook University; Dr. Sarah Tishkoff, Professor of Genetics and Biology at the University of Pennsylvania; and Dr. Tim White, Professor of Integrative Biology at the University of California, Berkeley. The fourth lecture is titled "Hominid Paleobiology. “And now, a brief video to introduce our lecturer, Dr. Tim White. 2. Profile of Dr. Tim White (1:10) [ Music ][DR. WHITE:] The traditional image I think of the paleoanthropologist is sort of an amateur who rides off into the desert on a camel, kicks some skull out of the sand, exclaims eureka, publishes a headline, and then a personal book about how wonderful it was to find the fossil, and then goes on a lecture circuit. That is not the way modern paleoanthropology proceeds. Modern paleoanthropology is a multidisciplinary effort. So you can come to be a paleoanthropologist through all kinds of different disciplines. To give you a far-out one, space sciences: today, that’s how we find the sites. We don't find them from the top of a camel; we find them from satellites, satellite imagery, digital imagery. And we don't control where we are from looking around at an aerial photograph the way it was, say, 25 years ago when I started in this field; we go out with differential GPS and we can code that and put it right into our field logs.
    [Show full text]
  • The Middle Stone Age of the Northern Kenyan Rift: Age and Context of New Archaeological Sites from the Kapedo Tuffs
    Journal of Human Evolution 55 (2008) 652–664 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The Middle Stone Age of the northern Kenyan Rift: age and context of new archaeological sites from the Kapedo Tuffs Christian A. Tryon a,*, Neil T. Roach b, M. Amelia V. Logan c a Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 112, Washington DC, 20013-7012, USA b Department of Anthropology, Harvard University, Cambridge MA, 02138, USA c Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 119, Washington DC, 20013-7012, USA article info abstract Article history: Rift Valley sites in southern Ethiopia and northern Kenya preserve the oldest fossil remains attributed to Received 22 June 2007 Homo sapiens and the earliest archaeological sites attributed to the Middle Stone Age (MSA). New Accepted 14 March 2008 localities from the Kapedo Tuffs augment the sparse sample of MSA sites from the northern Kenya Rift. Tephrostratigraphic correlation with dated pyroclastic deposits from the adjacent volcano Silali suggests an age range of 135–123 ka for archaeological sites of the Kapedo Tuffs. Comparisons of the Kapedo Tuffs Keywords: archaeological assemblages with those from the adjacent Turkana and Baringo basins show broad lithic Tephrostratigraphy technological similarity but reveal that stone raw material availability is a key factor in explaining Silali Lithic technology typologically defined archaeological variability within this region. Spatially and temporally resolved Regional variation comparisons such as this provide the best means to link the biological and behavioral variation manifest Middle-Late Pleistocene in the record of early Homo sapiens.
    [Show full text]