Urinary System A&P

Total Page:16

File Type:pdf, Size:1020Kb

Urinary System A&P URINARY SYSTEM A&P BERRYHILL AND CASHION HS1, DHO 7.12 2017-2018 URINARY SYSTEM • AKA EXCRETORY SYSTEM • REMOVES WASTES & EXCESS WATER • MAINTAIN ACID-BASE BALANCE • HELPS MAINTAIN BODY’S HOMEOSTASIS URINARY SYSTEM PARTS OF THE URINARY SYSTEM: 2 KIDNEYS 2 URETERS 1 BLADDER 1 URETHRA KIDNEYS • BEAN-SHAPED ORGANS • FOUND ON EITHER SIDE OF VERTEBRAL COLUMN • LOCATED IN RETROPERITONEAL SPACE • RETROPERITONEAL SPACE=AREA BEHIND UPPER PART OF ABD CAVITY; SEPARATED FROM ABD CAVITY BY PERITONEAL MEMBRANE KIDNEYS • PROTECTED BY RIBS & FAT CUSHION • HELD IN PLACE BY CONNECTIVE TISSUE • EACH KIDNEY IS ENCLOSED IN MASS OF FATTY TISSUE=ADIPOSE CAPSULE • EACH KIDNEY IS COVERED BY A TOUGH, FIBROUS TISSUE=RENAL FASCIA OR FIBROUS CAPSULE APPLY YOUR KNOWLEDGE CAN YOU THINK OF AN EXAMPLE OF THE URINARY SYSTEM’S ABILITY TO MAINTAIN HOMEOSTASIS? A GOOD EXAMPLE IS WHEN A PERSON DRINKS A LARGE AMOUNT OF WATER AND URINARY OUTPUT INCREASES KIDNEYS DIVIDED INTO 2 MAIN SECTIONS: CORTEX & MEDULLA CORTEX= • OUTER SECTION • CONTAINS MOST OF THE NEPHRONS (NEPHRONS AID IN PRODUCTION OF URINE) KIDNEYS MEDULLA= • INNER SECTION • CONTAINS MOST OF THE COLLECTING TUBULES (COLLECTING TUBULES CARRY URINE FROM NEPHRONS THROUGH THE KIDNEY) KIDNEYS • EACH KIDNEY HAS A HILUM • HILUM=NOTCHED OR INDENTED AREA • THE URETER, NERVES, BLOOD VESSELS, & LYMPH VESSELS ENTER & LEAVE THE KIDNEY THROUGH THE HILUM TEST YOUR KNOWLEDGE SO, LET’S THINK THIS THROUGH….YOU HAVE TO PRODUCE THE URINE FIRST AND THEN SEND THE URINE OUT OF THE KIDNEY. IN WHAT ORDER DOES FLUID PASS THROUGH THE KIDNEY AND ITS LAYERS ON THE WAY TO THE URETER? THE ANSWER IS…CORTEX TO THE MEDULLA TO THE HILUM KIDNEYS • NEPHRONS=MICROSCOPIC FILTERING UNITS OF THE KIDNEY • THERE ARE MORE THAN 1 MILLION NEPHRONS PER KIDNEY KIDNEYS EACH NEPHRON CONSISTS OF A: GLOMERULUS BOWMAN’S CAPSULE PROXIMAL CONVOLUTED TUBULE DISTAL CONVOLUTED TUBULE COLLECTING DUCT (TUBULE) KIDNEYS • THE RENAL ARTERY CARRIES BLOOD TO THE KIDNEY • BRANCHES OF THE RENAL ARTERY PASS THROUGH THE MEDULLA TO THE CORTEX • THIS IS WHERE BLOOD ENTERS THE 1ST PART OF THE NEPHRON, THE GLOMERULUS • GLOMERULUS=CLUSTER OF CAPILLARIES THIS IS THE START OF THE PROCESS OF FILTRATION!!! KIDNEYS • AS BLOOD PASSES THROUGH THE GLOMERULUS, THE GLOMERULUS FILTERS OUT: WATER MINERAL SALTS GLUCOSE METABOLIC PRODUCTS IMPORTANT!!! RBCS AND PROTEINS ARE NOT FILTERED OUT!!! KIDNEYS • FILTERED BLOOD LEAVES THE GLOMERULUS & MOVES TO THE RENAL VEIN WHICH CARRIES IT AWAY FROM THE KIDNEY • THE SUBSTANCES FILTERED OUT BY THE GLOMERULUS ENTER THE NEXT SECTION OF THE NEPHRON, BOWMAN’S CAPSULE KIDNEYS • BOWMAN’S CAPSULE=C-SHAPED STRUCTURE THAT SURROUNDS THE GLOMERULUS • IT IS THE START OF THE CONVOLUTED TUBULE • BOWMAN’S CAPSULE PICKS UP THE FILTERED MATERIALS & PASSES THEM INTO THE CONVOLUTED TUBULE KIDNEYS • AS THE FILTERED MATERIAL PASSES THROUGH THE TUBULE, SUBSTANCES NEEDED BY THE BODY ARE REABSORBED AND RETURNED TO THE BLOOD CAPILLARIES • THOSE SUBSTANCES NEEDED BY THE BODY ARE: MOST OF THE WATER, GLUCOSE, VITAMINS, AND MINERAL SALTS KIDNEYS • REMAINING IN THE TUBULE (AND NOT NEEDED BY THE BODY AND NOT REABSORBED) ARE: EXCESS GLUCOSE AND MINERAL SALTS SOME WATER WASTES (UREA, URIC ACID, AND CREATININE) • THESE EXCESS SUBSTANCES ARE A CONCENTRATED LIQUID=URINE KIDNEYS • URINE ENTERS COLLECTING DUCTS (TUBULES) LOCATED IN THE MEDULLA • THE COLLECTING DUCTS EMPTY INTO THE RENAL PELVIS (RENAL BASIN), • RENAL PELVIS=FUNNEL-SHAPED STRUCTURE THAT IS THE 1ST SECTION OF THE URETER TEST YOUR KNOWLEDGE • DURING THE PROCESS OF FILTRATION IN THE NEPHRON, MOST OF THE WATER, GLUCOSE, AND VITAMINS ARE: A. STORED IN THE BLADDER B. EXCRETED THROUGH THE URETERS C. REABSORBED INTO THE BLOOD D. CONCENTRATED IN THE URINE AND THE ANSWER IS…C TEST YOUR KNOWLEDGE • WHAT WOULD YOU FIND INSIDE THE GLOMERULUS? BLOOD • WHAT C-SHAPED STRUCTURE IN THE NEPHRON SURROUNDS THE GLOMERULUS? BOWMAN’S CAPSULE URETERS • 2 MUSCULAR TUBES • 10-12 INCHES LONG • RENAL PELVIS=FUNNEL-SHAPED 1ST SECTION OF URETER • ONE URETER EXTENDS FROM THE RENAL PELVIS OF EACH KIDNEY TO THE BLADDER URETERS • PERISTALSIS MOVES URINE THROUGH URETER FROM KIDNEY TO BLADDER (GEE, THIS IS NOT THE FIRST TIME WE HAVE HEARD OF PERISTALSIS-WHERE ARE THE OTHER INSTANCES OF PERISTALSIS THAT WE HAVE STUDIED?) BLADDER • HOLLOW, MUSCULAR SAC • FOUND BEHIND SYMPHYSIS PUBIS • LOCATED AT MIDLINE OF PELVIC CAVITY • RECEIVES URINE FROM URETERS • STORES URINE UNTIL IT IS VOIDED • VOID=URINATE=MICTURATE BLADDER • LINED WITH MUCOUS MEMBRANE • MUCOUS MEMBRANE HAS RUGAE (FOLDS) • RUGAE DISAPPEAR AS BLADDER EXPANDS TO FILL WITH URINE • BLADDER WALLS ARE MADE OF TRIPLE LAYER OF VISCERAL (SMOOTH) MUSCLE BLADDER • CIRCULAR SPHINCTER MUSCLE CONTROLS THE BLADDER OPENING TO PREVENT EMPTYING • RECEPTORS IN BLADDER SEND OUT A REFLEX ACTION WHICH OPENS THE MUSCLE • URGE TO VOID OCCURS WHEN BLADDER HAS 250ML BUT IT CAN HOLD MUCH MORE BLADDER • INFANTS CANNOT CONTROL THE REFLEX ACTION • AS CHILDREN GROW, THEY LEARN TO CONTROL THE REFLEX TEST YOUR KNOWLEDGE • WHAT ARE THE DIFFERENT TERMS USED TO DESCRIBE “SOMEONE PEEING”? THE ANSWER IS…TO VOID, TO URINATE, TO MICTURATE TEST YOUR KNOWLEDGE • IN WHAT PART OF THE URINARY SYSTEM DOES PERISTALSIS OCCUR? URETER • IF YOU COULD SEE THE INSIDE OF AN EMPTY BLADDER, WHAT WOULD YOU SEE? RUGAE URETHRA • TUBE THAT CARRIES URINE FROM BLADDER TO OUTSIDE OF BODY • URINARY MEATUS=EXTERNAL OPENING OF URETHRA URETHRA FEMALE URETHRA: 1.5 INCHES LONG OPENS IN FRONT OF VAGINA CARRIES ONLY URINE URETHRA MALE URETHRA: 8 INCHES LONG PASSES THROUGH THE PROSTATE GLAND EXISTS THE PENIS CARRIES BOTH URINE & SEMEN (NOT AT THE SAME TIME) TEST YOUR KNOWLEDGE • THE URETHRA IN THE MALE SERVES TO BODY SYSTEMS, WHAT ARE THEY? URINARY AND REPRODUCTIVE • WHAT IS THE LAST STRUCTURE URINE PASSES BEFORE LEAVING THE BODY? URINARY MEATUS URINE • LIQUID WASTE PRODUCT OF URINARY SYSTEM • APROX 95% WATER • CONTAINS DISSOLVED WASTE PRODUCTS: UREA, URIC ACID, CREATININE, MINERAL SALTS, PIGMENTS URINE • EXCESS USEFUL PRODUCTS (LIKE SUGAR) CAN ALSO BE FOUND IN URINE • WHEN USEFUL PRODUCTS ARE IN URINE, IT USUALLY INDICATES DISEASE!! URINE • KIDNEYS FILTER ABOUT 150 QUARTS OF LIQUID DAILY • ABOUT 1,500-2,000 ML (1.5-2 QUARTS) OF URINE ARE PRODUCED DAILY TEST YOUR KNOWLEDGE • WHAT IS CONSIDERED A NORMAL COMPONENT OF URINE? A. BACTERIA B. SUGAR C. URIC ACID D. RED BLOOD CELLS AND THE ANSWER IS…C APPLY YOUR KNOWLEDGE OK, LET’S TAKE IT ONE STEP FURTHER….WHAT SHOULD YOU THINK IF USEFUL PRODUCTS LIKE SUGAR OR PROTEIN ARE FOUND IN URINE? DISEASE!! DO YOU KNOW OF A DISEASE THAT INVOLVES SUGAR IN THE URINE? DIABETES URINATION TERMS TERMS USED TO DESCRIBE CONDITIONS THAT AFFECT URINATION: POLYURIA=EXCESSIVE URINATION OLIGURIA=BELOW NORMAL AMOUNT OF URINE ANURIA=ABSENCE OF URINATION HEMATURA=BLOOD IN URINE PYURIA=PUS IN URINE URINATION TERMS NOCTURIA=URINATION AT NIGHT DYSURIA=PAINFUL URINATION RETENTION=INABILITY TO EMPTY BLADDER INCONTINENCE=INVOLUNTARY URINATION PROTEINURIA=PROTEIN IN URINE ALBUMINURIA=ALBUMIN (A BLOOD PROTEIN) IN URINE TEST YOUR KNOWLEDGE • WHICH URINARY TERM WOULD YOU APPLY TO THIS SITUATION? PATRICE IS NOT ILL BUT DRANK A LARGE AMOUNT OF ICE TEA. YOU WOULD EXPECT HER TO HAVE….? THE ANSWER IS…POLYURIA APPLY YOUR KNOWLEDGE A CONSTRUCTION WORKER FALLS AND STRIKES HIS LOWER ABDOMEN ON A HARD OBJECT. WHAT MIGHT HE EXPERIENCE AS A RESULT? WHICH MEDICAL TERM WOULD YOU APPLY TO THIS SITUATION? THE ANSWER IS…HEMATURIA.
Recommended publications
  • Female Urethra
    OBJECTIVES: • By the end of this lecture, student should understand the anatomical structure of urinary system. General Information Waste products of metabolism are toxic (CO2, ammonia, etc.) Removal from tissues by blood and lymph Removal from blood by Respiratory system And Urinary system Functions of the Urinary System Elimination of waste products Nitrogenous wastes Toxins Drugs Functions of the Urinary System Regulate homeostasis Water balance Acid-base balance in the blood Electrolytes Blood pressure Organs of the Urinary system Kidneys Ureters Urinary bladder Urethra Kidneys Primary organs of the urinary system Located between the 12th thoracic and 3rd lumbar vertebrae. Right is usually lower due to liver. Held in place by connective tissue [renal fascia] and surrounded by thick layer of adipose [perirenal fat] Each kidney is approx. 3 cm thick, 6 cm wide and 12 cm long Regions of the Kidney Renal cortex: outer region Renal medulla: pyramids and columns Renal pelvis: collecting system Kidneys protected by three connective tissue layers Renal fascia -Attaches to abdominal wall Renal capsule: -Surrounds each kidney -Fibrous sac -Protects from trauma and infection Adipose capsule -Fat cushioning kidney Nephrons Each kidney contains over a million nephrons [functional structure] • Blood enters the nephron from a network that begins with the renal artery. • This artery branches into smaller and smaller vessels and enters each nephron as an afferent arteriole. • The afferent arteriole ends in a specialized capillary called the Glomerulus. • Each kidney has a glomerulus contained in Bowman’s Capsule. • Any cells that are too large to pass into the nephron are returned to the venous blood supply via the efferent arteriole.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Assessment of the Renal/Urinary System
    Assessment of the Renal/Urinary System Professor Minodora Mazur Chisinau 2019 Why person has 2 eyes or 2 ears? And only one nose? How many kidneys does the person have? Urinary system • Kidneys • Ureters • Urinary bladder • Urethra Kidneys • Paired organs • Located retroperitoneally on the posterior wall of the abdomen from T12-L3 • The average adult kidney weighs 4.5oz = 125-150 gr • The right kidney sits is lower in the abdomen due to liver placement • An adrenal gland sits are on top of each kidney Kidney Anatomy Each kidney has two parts • The renal medulla is the inner portion – consists of renal pyramids which are collecting ducts that drain into renal pelvis – Once urine leaves the renal pelvis the composition or amount of urine does not change • The Cortex is the outer portion – contains nephrons Nephron • Each kidney has approximately 1 million nephrons • If the function is less than 20% replacement therapy is usually initiated • The nephron is responsible for the initial formation of urine Glomerulus Kidney functions • Urine formation • Excretion of waste products • Regulation of electrolytes • Regulation of acid-base balance • Control of water balance • Control BP • Regulation of RBC production • Synthesis of vitamin D to active form • Secretion of prostaglandins • Regulation of calcium and phosphorus balance Urine Formation • Urine is formed in the nephrons in a three step process – Glomerular filtration – Tubular reabsorption – Tubular secretion • Glomerular Filtration produces ultrafiltrate which enters the tubules • Selective
    [Show full text]
  • Clinical and Functional Anatomy of the Urethral Sphincter
    Review Article International Neurourology Journal Int Neurourol J 2012;16:102-106 http://dx.doi.org/10.5213/inj.2012.16.3.102 pISSN 2093-4777 · eISSN 2093-6931 INJ Clinical and Functional Anatomy of the Urethral Sphincter Junyang Jung, Hyo Kwang Ahn, Youngbuhm Huh Department of Anatomy, Kyung Hee University School of Medicine, Seoul, Korea Continence and micturition involve urethral closure. Especially, insufficient strength of the pelvic floor muscles including the urethral sphincter muscles causes urinary incontinence (UI). Thus, it is most important to understand the main mechanism causing UI and the relationship of UI with the urethral sphincter. Functionally and anatomically, the urethral sphincter is made up of the internal and the external sphincter. We highlight the basic and clinical anatomy of the internal and the external sphinc- ter and their clinical meaning. Understanding these relationships may provide a novel view in identifying the main mechanism causing UI and surgical techniques for UI. Keywords: Urethral sphincters; Pudendal nerve; Autonomic nervous system; Urinary incontinence; Urination INTRODUCTION tomical damage to the ligaments, facial support, and pelvic floor musculature, including the levator ani [8]. The pudendal nerve The urethral sphincter is crucial for the maintenance of urinary innervating the EUS is susceptible to injury during vaginal birth continence [1,2]. The urethral sphincter refers to one of the fol- because it travels between the sacrospinous and sacrotuberous lowing muscles [3]: 1) the internal urethral sphincter (IUS), ligaments [9]. In this article, we discuss the basic and clinical which consists of smooth muscle and is continuous with the anatomy of the urethral sphincter and the relationship between detrusor muscle and under involuntary control, and 2) the ex- the urethral sphincter and UI.
    [Show full text]
  • Urinary Tract Eod Stage & Treatment
    2/20/2020 SHRI VIDEO TRAINING SERIES 2018 DX forward Recorded 2/2020 URINARY TRACT EOD STAGE & TREATMENT PRESENTED BY LORI SOMERS, RN IOWA CANCER REGISTRY 1 BLADDER C670‐C679 EOD PRIMARY TUMOR EOD REGIONAL LYMPH NODES EOD METASTASIS 2 1 2/20/2020 EOD • General Coding instructions, 32 pg pdf • https://seer.cancer.gov/tools/staging/2018‐ EOD‐General‐Instructions.pdf • Timing rules • What to include re clinical or path findings • Rules re neoadjuvant therapy • Discrepancies between op/path 3 BLADDER EOD PRI TUMOR • Note 1: Two main types of bladder cancer – Flat (sessile) • Called in situ when tumor has not penetrated basement membrane – Papillary type • Called noninvasive when tumor has not penetrated basement membrane 4 2 2/20/2020 EOD PRI TUMOR • Note 2: Noninvasive papillary transitional carcinoma: Pathologists use many descriptive terms for noninvasive papillary TCC. Frequently the path report does not contain a definitive statement of non‐invasion. – Non‐invasion can be inferred from microscopic description – List of terms in SEER*RSA schema 5 Definite statements non‐invasion ‘for papillary TCC’ • Noninfiltrating • Noninvasive • No evidence of invasion • No extension into lamina propria • No stromal invasion • No extension into underlying supporting tissue • Neg lamina propria and superficial muscle • Neg muscle and (subepithelial) connective tissue • No infiltrative behavior/component 6 3 2/20/2020 Inferred descriptions of non‐invasion ‘for papillary TCC’ • No involvement of musc propria and no mention of subepthelium/submucosa • No statement of invasion (microscopic description present • (Underlying) tissue insufficient to judge depth of invasion • No involvement of muscularis propria • Benign deeper tissue • Microscopic description problematic (non‐invas vs superficial invas) • Frond surfaced by transitional cell • No mural infiltration • No evid of invasion (no sampled stroma) • Confined to mucosa 7 EOD PRI TUMOR Note 3: Noninvasive (in situ) flat transitional cell carcinoma: .
    [Show full text]
  • Urinary System
    OUTLINE 27.1 General Structure and Functions of the Urinary System 818 27.2 Kidneys 820 27 27.2a Gross and Sectional Anatomy of the Kidney 820 27.2b Blood Supply to the Kidney 821 27.2c Nephrons 824 27.2d How Tubular Fluid Becomes Urine 828 27.2e Juxtaglomerular Apparatus 828 Urinary 27.2f Innervation of the Kidney 828 27.3 Urinary Tract 829 27.3a Ureters 829 27.3b Urinary Bladder 830 System 27.3c Urethra 833 27.4 Aging and the Urinary System 834 27.5 Development of the Urinary System 835 27.5a Kidney and Ureter Development 835 27.5b Urinary Bladder and Urethra Development 835 MODULE 13: URINARY SYSTEM mck78097_ch27_817-841.indd 817 2/25/11 2:24 PM 818 Chapter Twenty-Seven Urinary System n the course of carrying out their specific functions, the cells Besides removing waste products from the bloodstream, the uri- I of all body systems produce waste products, and these waste nary system performs many other functions, including the following: products end up in the bloodstream. In this case, the bloodstream is ■ Storage of urine. Urine is produced continuously, but analogous to a river that supplies drinking water to a nearby town. it would be quite inconvenient if we were constantly The river water may become polluted with sediment, animal waste, excreting urine. The urinary bladder is an expandable, and motorboat fuel—but the town has a water treatment plant that muscular sac that can store as much as 1 liter of urine. removes these waste products and makes the water safe to drink.
    [Show full text]
  • The Urinary System Dr
    The urinary System Dr. Ali Ebneshahidi Functions of the Urinary System • Excretion – removal of waste material from the blood plasma and the disposal of this waste in the urine. • Elimination – removal of waste from other organ systems - from digestive system – undigested food, water, salt, ions, and drugs. + - from respiratory system – CO2,H , water, toxins. - from skin – water, NaCl, nitrogenous wastes (urea , uric acid, ammonia, creatinine). • Water balance -- kidney tubules regulate water reabsorption and urine concentration. • regulation of PH, volume, and composition of body fluids. • production of Erythropoietin for hematopoieseis, and renin for blood pressure regulation. Anatomy of the Urinary System Gross anatomy: • kidneys – a pair of bean – shaped organs located retroperitoneally, responsible for blood filtering and urine formation. • Renal capsule – a layer of fibrous connective tissue covering the kidneys. • Renal cortex – outer region of the kidneys where most nephrons is located. • Renal medulla – inner region of the kidneys where some nephrons is located, also where urine is collected to be excreted outward. • Renal calyx – duct – like sections of renal medulla for collecting urine from nephrons and direct urine into renal pelvis. • Renal pyramid – connective tissues in the renal medulla binding various structures together. • Renal pelvis – central urine collecting area of renal medulla. • Hilum (or hilus) – concave notch of kidneys where renal artery, renal vein, urethra, nerves, and lymphatic vessels converge. • Ureter – a tubule that transport urine (mainly by peristalsis) from the kidney to the urinary bladder. • Urinary bladder – a spherical storage organ that contains up to 400 ml of urine. • Urethra – a tubule that excretes urine out of the urinary bladder to the outside, through the urethral orifice.
    [Show full text]
  • The Role of the External Sphincter
    PARAPLEGIA REFERENCES Ross, J. COSBIE, GIBBON, N. O. K. & DAMANSKI, M. (1967). B.J.S. 54, NO. 7. STAMEY, T. (1968). J. Urol. 97, (May). VINCENT, S. A. (1959). Ulster med. Jour. 28, 176. VINCENT, S. A. (1960). Lancet, 2, 292. VINCENT, S. A. (1964). Dev. Med. and Child Neurol. 6, 23. VINCENT, S. A. (1966a). Lancet, Sept., 631-632. VINCENT, S. A. (1966b). Bio-Engineering, Sept., p. 1. THE ROLE OF THE EXTERNAL SPHINCTER By J. COSBIE Ross Director of Urological Studies, University of Liverpool Introduction. It must be acknowledged that as yet no one knows the precise role of the external sphincter and there should, by right, be a question mark after the word 'sphincter'. The problem is much more complex and obscure than the simple, easily understood mechanism of the anal sphincter. However, there is much that is already known, and perhaps recent work has shed some light on the problem. First, the traditional view. In the 32nd Edition of Gray's Anatomy (1958), the description is as follows. 'The sphincter urethrae surrounds the membranous portion of the urethra, and lies deep to the inferior fascia of the urogenital diaphragm. Its superficial or inferior fibres arise in front from the transverse perineal ligament and from the neighbouring fascia. They pass backwards on each side of the urethra and converge on the perineal body for their insertion. Its deep fibres, some of which arise from the fascial sheath of the pudendal vessels and pass medially, form a continuous circular investment for the membranous urethra.' Actions. 'The muscles of both sides act together as a sphincter, compressing the membranous part of the urethra.
    [Show full text]
  • Laboratory 8 - Urinary and Reproductive Systems
    Laboratory 8 - Urinary and Reproductive Systems Urinary System Please read before starting: It is easy to damage the structures of the reproductive system as you expose structures associated with excretion, so exercise caution as you do this. Please also note that we will have drawings available as well to help you find and identify the structures described below. The major blood vessels serving the kidneys are the Renal renal artery and the renal pyramid vein., which are located deep in the parietal peritoneum. The renal artery is a branch of the dorsal aorta that comes off Renal further caudal than the cranial pelvis mesenteric artery. Dissect the left kidney in situ, dividing it into dorsal and ventral portions by making a frontal section along the outer periphery. Observe the renal cortex renal medulla (next layer in) renal pyramids renal pelvis ureter (see above diagram) The kidneys include a variety of structures including an arterial supply, a venous return, extensive capillary networks around each nephron and then, of course, the filtration and reabsorption apparatus. These structures are primarily composed of nephrons (the basic functional unit of the kidney) and the ducts which carry urine away from the nephron (the collecting ducts and larger ducts eventually draining these into the ureters from each kidney. The renal pyramids contain the extensions of the nephrons into the renal medulla (the Loops of Henle) and the collecting ducts. Urine is eventually emptied into the renal pelvis before leaving the kidneys in the ureters. The ureters leaves the kidneys medially at approximately the midpoint of the organs and then run caudal to the urinary bladder.
    [Show full text]
  • Kidney in an Effort to Aid Health Information Management Coding Professionals for ICD-10, the Following Anatomy Tip Is Provided with an Educational Intent
    Anatomy Tip Kidney In an effort to aid Health Information Management Coding Professionals for ICD-10, the following anatomy tip is provided with an educational intent. The kidneys are the main part of the urinary system and are a pair of organs; right and left; located in the back of the abdomen. Each kidney is about 4 or 5 inches long. • The kidneys are surrounded by three layers of tissue: • The renal fascia is a thin, outer layer of fibrous connective tissue that surrounds each kidney (and the attached adrenal gland) and fastens it to surrounding structures. • The adipose capsule is a middle layer of adipose (fat) tissue that cushions the kidneys. • The renal capsule is an inner fibrous membrane that prevents the entrance of infections. • There are three major regions inside the kidney: • The renal cortex borders the convex side. • The renal medulla lies adjacent to the renal cortex. It consists of striated, cone-shaped regions called renal pyramids (medullary pyramids), whose peaks, called renal papillae, face inward. The unstriated regions between the renal pyramids are called renal columns. • The renal sinus is a cavity that lies adjacent to the renal medulla. The other side of the renal sinus, bordering the concave surface of the kidney, opens to the outside through the renal hilus. The ureter, nerves, and blood and lymphatic vessels enter the kidney on the concave surface through the renal hilus. The renal sinus houses the renal pelvis, a funnel-shaped structure that merges with the ureter. • All the blood in our bodies passes through the kidneys several times a day.
    [Show full text]
  • Laparoscopic Colectomy for a Patient with Congenital Renal Agenesis
    [Downloaded free from http://www.jstcr.org on Monday, October 07, 2013, IP: 41.135.175.93] || Click here to download free Android application for this journal cASE REPORt Laparoscopic Colectomy for a Patient with Congenital Renal Agenesis Hiroyuki Tanishima, Tetsuya Horiuchi, Yoshiharu Shono, Masamichi Kimura Department of Surgery, National Hospital Organization, ABSTRACT Osaka Minami Medical Center, Osaka, Japan We present a very rare case of laparoscopic colectomy for a patient with ascending colon cancer and an agenetic INTRODUCTION right kidney. A 57-year-old man visited our institute for further evaluation for a positive fecal occult blood test. ongenital unilateral renal agenesis is a rare Approximately, 20 years earlier, the right kidney of the patient condition. In patients with the congenital absence was found to be congenitally absent. A physical examination indicated no anatomical anomalies in his genitourinary [1] Cof the kidney, the renal fascia is also absent. Here, system, and the renal function was within the normal range. for the first time, we report the case of a patient with Total colonoscopy revealed a cancer of the ascending cancer of the ascending colon and right renal agenesis who colon and laparoscopic colectomy was performed. The was treated by laparoscopic colectomy, and discussed the right colon was mobilized by lateral-to-medial extension of a retroperitoneal dissection between the fusion fascia and presence of the anterior renal fascia in such cases based on the anterior renal fascia. The right testicular vessels were our experience and from a review of the literature. preserved without injury to the anterior renal fascia; however, the right ureter could not be detected.
    [Show full text]
  • Urinary System
    Urinary System Urinary System Urinary System - Overview: Major Functions: 1) Removal of organic waste products Kidney from fluids (excretion) 2) Discharge of waste products into the environment (elimination) 1 3) Regulation of the volume / [solute] / pH 3 of blood plasma Ureter HOWEVER, THE KIDNEY AIN’T JUST FOR PEE’IN… Urinary bladder • Regulation of blood volume / blood pressure (e.g., renin) • Regulation of red blood cell formation (i.e., erythropoietin) 2 • Metabolization of vitamin D to active form (Ca++ uptake) Urethra • Gluconeogenesis during prolonged fasting Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 25.1 1 Urinary System Renal ptosis: Kidneys drop to lower position due Functional Anatomy - Kidney: to loss of perirenal fat Located in the superior lumbar “Bar of soap” region 12 cm x 6 cm x 3 cm 150 g / kidney Layers of Supportive Tissue: Renal fascia: Peritoneal cavity Outer layer of dense fibrous connective tissue; anchors kidney in place Perirenal fat capsule: Fatty mass surrounding kidney; cushions kidney against blows Fibrous capsule: Transparent capsule on kidney; prevents infection of kidney from local tissues Kidneys are located retroperitoneal Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figure 25.2 Urinary System Functional Anatomy - Kidney: Pyelonephritis: Inflammation of the kidney Pyramids appear striped due to parallel arrangement of capillaries / collecting tubes Renal cortex Renal medulla Renal pyramids Renal papilla Renal columns Renal hilum Renal pelvis • Entrance for blood vessels
    [Show full text]