Europe–Japan Strategic Partnership: the Space Dimension

Total Page:16

File Type:pdf, Size:1020Kb

Europe–Japan Strategic Partnership: the Space Dimension Europe–Japan Strategic Partnership: the Space Dimension Report 40 April 2012 Jana Robinson Short title: ESPI Report 40 ISSN: 2076-6688 Published in April 2012 Price: €11 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 40; April 2012. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 40 2 April 2012 Europe–Japan Strategic Partnership: the Space Dimension Table of Contents Executive Summary 4 1. Introduction 10 2. Space in Europe and Japan: Key Institutions, Policies, and Budgets 12 2.1 General Structure of Institutions Involved in Space 12 Europe 12 Japan 12 2.2 Space Policies: Latest Developments 13 Europe’s Space Policy 13 Japan’s Space Policy 15 2.3 Space Budgets 17 Global Overview 17 Europe’s Space Budgets 18 Japan’s Space Budget 20 3. Europe–Japan Space Cooperation in Select Areas 22 3.1 Access to Space and Space Exploration 22 3.1.1 Launchers 22 Status of Europe’s Launchers 24 Status of Japan’s Launchers 26 Europe–Japan Space Transportation Cooperation 30 3.1.2 Space Exploration 31 Europe’s Space Exploration Activities 33 Japan’s Space Exploration Activities 36 Cooperation in Space Exploration 37 3.2 Earth Observation and Related Applications 39 3.2.1 Europe’s Key Earth Observation-Related Activities 40 3.2.2 Japan’s Earth Observation-Related Activities 46 3.2.3 Europe–Japan Cooperation in the Field of Earth Observation 49 3.3 Industry-To-Industry Cooperation 51 3.3.1 Europe’s Space Industry 52 3.3.2 Japan’s Space Industry 54 3.3.3 Europe–Japan Space Industry Cooperation 58 3.4 Space Security 61 3.4.1 Europe’s Objectives for Space Security 62 3.4.2 Japan’s Objectives for Space Security 66 3.4.3 Europe–Japan Space Security Cooperation 69 4. Conclusion 71 List of Acronyms 72 Annex 76 A.1 Project Methodology 76 A.2 Agenda of the Europe–Japan Space Workshop Organised by ESPI 78 Acknowledgements 79 About the Author 79 ESPI Report 40 3 April 2012 Executive Summary This report entitled “Europe-Japan Strategic sive manner. This Summit occurred a decade Partnership: the Space Dimension” seeks to after adopting a ten-year “Joint Action Plan introduce how cooperation could be strength- for EU-Japan Cooperation” in 2001. ened in four prospective areas of space- In June 2011, the EU and Japan held their related activities which could, in turn, con- first Joint Committee on EU–Japan Scientific tribute to the Europe-Japan strategic partner- and Technological (S&T) Cooperation stem- ship more broadly. The four areas examined ming from the new bilateral S&T Cooperation include: exploration and access to space; Agreement of March 2011. With the goal of Earth observation and related applications; intensifying gradually S&T cooperation, the industry-to-industry cooperation; and space Committee addressed two issues at the first security. The report argues that inserting key meeting: low carbon societies/technologies space issue areas into existing EU - Japan and critical raw materials. Space technologies venues for bilateral consultations and deci- can contribute significantly to both of these sion-making has the potential to bolster the areas. overarching objective of deepening further political, economic, commercial, societal and With regard to European space policy, ESA cultural relations. Space can also serve as a and its predecessors have engaged for over powerful enabler of certain priority foreign four decades in space programmes for sci- policy objectives of both the EU and Japan. ence, Earth observation, telecommunications, navigation, human spaceflight and explora- The report first provides an overview of the tion, and launchers. ESA–EU cooperation is key space-related institutions and players of based on a 2004 Framework Agreement both sides, recent developments in their re- which coordinates the activities of ESA and spective space policies, and budgetary con- the European Commission through a Joint siderations as a lead-in to exploring ex- Secretariat. With the entry into force of the panded cooperation in space. Lisbon Treaty in December 2009, the EU was The EU and Japan represent the world’s larg- granted, for the first time, an explicit compe- est and fourth largest economies and account tence in the space domain. Its Article 189 for 33% and 11% of world GDP, and 17% formalised the status of space activities and and 6% of world trade, respectively (as at stated that appropriate relations should be February 2011). Both Europe and Japan established with ESA. In short, Europe is now share the basic principles of democracy, free positioned to pursue and invigorate current market economies, multilateralism and sev- space efforts for the benefit of mankind and eral other characteristics that serve as the Europe’s overall global standing. With regard back-bone of this long-standing partnership. to Europe’s position as a space-faring power, the European Space Policy of 2007 empha- The formal bilateral relationship between the sises the direct connection between space- EU and Japan dates back to 1991 when both related capabilities and the EU’s ability to partners signed the “Joint Declaration be- exercise influence regionally and globally. tween Japan and the European Community and its Member States”. The Declaration in- For its part, Japan enacted a “Basic Law on stituted a consultation framework for annual Space” in May 2008. The law seeks to regu- meetings between the EU and Japan. At the late all space activities, public and private, 2010 EU-Japan Summit, a High-Level Group and establishes the strategic direction for was established to examine jointly ways to Japan’s space programme. After the enact- strengthen and integrate the EU-Japan eco- ment of the Basic Space Law, the Strategic nomic relationship. In May 2011, the 20th EU- Headquarters for Space Policy was estab- Japan Summit took place in Brussels with the lished at the Cabinet level, with the Prime goal of deepening further mutual political and Minister as Chairman, with a view toward economic relations. During the meeting, the consolidating Japan’s space activities. In June summit leaders agreed to launch negotiations 2009, the Strategic Headquarters released on a Free Trade Agreement (FTA)/Economic the Basic Plan for Space Policy with an over- Partnership Agreement (EPA) as well as a arching goal of implementing a comprehen- binding agreement that would address politi- sive strategy for space. The Basic Plan repre- cal and sectoral cooperation in a comprehen- sents a shift from research to civilian and ESPI Report 40 4 April 2012 Europe–Japan Strategic Partnership: the Space Dimension military applications and serves as Japan’s ture of space exploration. Many experts as- fundamental space policy document for im- sert that international cooperation in space plementation of the recent law. It also pro- exploration is essential and that Europe and vides a comprehensive roadmap for pursuing Japan have a number of opportunities to en- space activities. gage in closer dialogue concerning future joint endeavours. BepiColombo or Astro H are Concerning space budgets, the EU’s 2010 concrete expressions of this kind of coopera- budget for space-related programmes was tion. Space exploration will also always have €1.33 billion ($1.63 billion). The EU budgeted a strong human dimension. In the near term, for space research some €212.85 million ESA and JAXA might explore new angles of ($261.63) in 2010 to support the develop- bilateral cooperation with respect to ISS op- ment of European space applications, includ- eration and utilisation within the overall ing the Global Monitoring for Environment framework of the multilateral project. and Security (GMES). Security-related re- search was allocated €215.05 million Europe and Japan also share many key policy ($264.33 million) for the development of priorities that involve use of Earth observa- space-related technology and knowledge to tion satellites and derived information. These advance security-oriented activities (e.g. include space for societal and economic bene- disaster management, anti-terrorist opera- fits, environmental protection and climate tions, etc.). For satellite navigation, the EU’s change monitoring, and security (including budget earmarked €896.04 million ($1.1 disaster management). Accordingly, enhanc- billion) for deployment of the Galileo pro- ing Earth observation capabilities are a prior- gramme. ESA’s 2010 budget was €3.74 bil- ity for both Europe and Japan. Societal and lion ($4.6 billion), it being noted that France, economic benefits, as well as security, includ- Germany, Italy and other European space ing through international cooperation, will be agencies also conduct very significant space derived from Europe’s GMES and Japan’s activities with separate funding. By way of Sentinel Asia Project. Active engagement of comparison, Japan’s national budget alloca- both Europe and Japan in Earth observation- tion for space was $3.83 billion (¥339 billion, related undertakings is based on solid na- €3 billion) in FY 2010. Of this amount, JAXA tional foundations and accomplishments. received $2.03 billion (¥180 billion, €1.6 bil- Europe and Japan have also embarked on a lion).1 joint EO project. EarthCARE, which is the largest and most complex of ESA’s Earth With regard to access to space, there have Explorer missions, is being developed as a been a number of comparable launcher pro- joint venture between ESA and JAXA.
Recommended publications
  • Pete Aldridge Well, Good Afternoon, Ladies and Gentlemen, and Welcome to the Fifth and Final Public Hearing of the President’S Commission on Moon, Mars, and Beyond
    The President’s Commission on Implementation of United States Space Exploration Policy PUBLIC HEARING Asia Society 725 Park Avenue New York, NY Monday, May 3, and Tuesday, May 4, 2004 Pete Aldridge Well, good afternoon, ladies and gentlemen, and welcome to the fifth and final public hearing of the President’s Commission on Moon, Mars, and Beyond. I think I can speak for everyone here when I say that the time period since this Commission was appointed and asked to produce a report has elapsed at the speed of light. At least it seems that way. Since February, we’ve heard testimonies from a broad range of space experts, the Mars rovers have won an expanded audience of space enthusiasts, and a renewed interest in space science has surfaced, calling for a new generation of space educators. In less than a month, we will present our findings to the White House. The Commission is here to explore ways to achieve the President’s vision of going back to the Moon and on to Mars and beyond. We have listened and talked to experts at four previous hearings—in Washington, D.C.; Dayton, Ohio; Atlanta, Georgia; and San Francisco, California—and talked among ourselves and we realize that this vision produces a focus not just for NASA but a focus that can revitalize US space capability and have a significant impact on our nation’s industrial base, and academia, and the quality of life for all Americans. As you can see from our agenda, we’re talking with those experts from many, many disciplines, including those outside the traditional aerospace arena.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • Actes Du Colloque Du 2 Novembre 2005
    - 1 - ACTES DU COLLOQUE DU 2 NOVEMBRE 2005 « LA POLITIQUE SPATIALE EUROPÉENNE : QUELLES AMBITIONS POUR 2015 ? » ORGANISÉ PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ET M. CHRISTIAN CABAL, DÉPUTÉ, PRÉSIDENT DU GROUPE PARLEMENTAIRE SUR L’ESPACE - 2 - SOMMAIRE Pages I. INTERVENTIONS DE LA MATINÉE .................................................................................... 4 A. INTRODUCTION AU COLLOQUE PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ............................................................................. 4 B. INTERVENTION DE M. FRANÇOIS GOULARD, MINISTRE DÉLÉGUÉ À L’ENSEIGNEMENT SUPÉRIEUR ET À LA RECHERCHE. ................................................... 8 C. PREMIÈRE TABLE RONDE : L’AVENIR DE LA PROPULSION, LES LANCEURS DE DEMAIN ............................................................................................................................. 11 1. M. Viktor REMICHEVSKI, Directeur général adjoint de ROSKOSMOS ................................. 12 2. M. Kiyoshi HIGUCHI, Directeur exécutif de la JAXA (Japan Aerospace Exploration Agency .................................................................................................................................... 16 3. M. Jean-Yves LE GALL, Directeur général d’Arianespace ..................................................... 19 4. M. Michel EYMARD, Directeur des lanceurs du CNES..........................................................
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • The President's Commission on Implementation of US Space Exploration Policy
    The President’s Commission on Implementation of US Space Exploration Policy Testimony By Philippe Berterottière Senior Vice President Sales, Marketing & Customer Programs Arianespace SA Arianespace - May 3, 2004 Who We Are • Founded in 1980 • The world’s 1st commercial launch services provider • Signed over 250 contracts • Launched majority of commercial satellites in orbit • >50% of our business is with US manufacturers/operators • Privately held European company with 44 Shareholders from 13 European nations • Arianespace is the prime contractor to ESA for marketing, sales, integration and launch of Europe’s family of vehicles Arianespace - May 3, 2004 2 Family of Launch Vehicles • Serves European launch policy to optimize resources and address all market segments • A contract with ESA provides Arianespace with the rights to operate Europe’s family of launch vehicles • Arianespace operates 3 systems from French Guiana The heavy-lift Ariane 5 (operational) The medium-lift Soyuz ST (from 2006) The light-lift Vega (from 2006) • Arianespace is currently involved in Soyuz operations from Baikonur through our sister company Starsem Arianespace - May 3, 2004 3 Ariane 5 Current Configurations & Capabilities LEO GTO Moon (mt) (mt) (mt) Ariane 5 Generic 6.8 Ariane 5 ECA 10 7.5 Ariane 5 ES/V 21 ARIANE 5 Configuration Under Evaluation Ariane 5 ECB 23 12 9 With the two solid propellant boosters and the central core of Ariane 5, there is a tool kit to build a super-heavy vehicle, should the need arise Arianespace - May 3, 2004 Facilities • We launch
    [Show full text]
  • Cronología De Lanzamientos Espaciales
    Cronología de lanzamientos espaciales Cronología de Lanzamientos Espaciales Año 2011 Copyright © 2009 by Eladio Miranda Batlle. All rights reserved. Los textos, imágenes y tablas que se encuentran en esta cronología cuentan con la autorización de sus propietarios para ser publicadas o se hace referencia a la fuente de donde se obtuvieron los mismos. Eladio Miranda Batlle [email protected] Cronología de lanzamientos espaciales Contenido 2011 Enero 20.05.2011 Telstar 14R (Estrela do Sul 2) 20.01.11 KH-12 USA224 20.05.2011 ST 2 / GSat 8 (Insat 4G) 20.01.11 Elektro-L 22.01.11 HTV 2 /Kounotori-2. Junio 28.01.11 Progress-M 09M/ARISSat 07.06.2011 Soyuz TMA-02M/27S Febrero 10.06.2011 Aquarius (SAC D, ESSP 6) 15.06.2011 Rasad 1 01.02.11 Cosmos 2470 Geo-lk-2 20.06.2011 ZX 10 (ChinaSat 10) 06.02.11 RPP (USA 225,NROL 66) 21.06.2011 Progress-M 11M 16.02.11 ATV 2 (Johannes Kepler) 27.06.2011 Kosmos 2472 (Yantar- 24.02.11 Discovery F39(STS133) 4K2M #7) /PMM(Leonardo)/ELC 4 30.06.2011 ORS 1 26.02.11 Kosmos 2471(Urangan-K1) Julio Marzo 06.07.2011 SJ 11-03 04.03.11 Glory/ E1P/ KySat 1/ 08.07.2011 Atlantis F33 (STS-135) Hermes MPLM 2-04 (Raffaello 05.03.11 X-37B OTV-2 (USA 226) F4) PSSC-Testbed 2 11.03.11 SDS-3 6(USA 227, NROL 11.07.2011 TL 1B (Tianlian) 27) 13.07.2011 Globalstar MO81/83/85/88/89/91 15.07.2011 GSat 12 Abril 15.07.2011 SES 3 / Kazsat 2 16.07.2011 GPS-2F 2 (Navstar 66, 04.04.11 Soyuz TMA 21 USA 231) 09.04.11 BD-2 13 18.07.2011 Spektr-R (Radio-Astron) 15.04.11 NOSS-35A (USA 229, 26.07.2011 BD-2 I4 NROL 34) 29.07.2011 SJ 11-02 20.04.11
    [Show full text]
  • Space Security Index 2013
    SPACE SECURITY INDEX 2013 www.spacesecurity.org 10th Edition SPACE SECURITY INDEX 2013 SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2013 ISBN: 978-1-927802-05-2 FOR PDF version use this © 2013 SPACESECURITY.ORG ISBN: 978-1-927802-05-2 Edited by Cesar Jaramillo Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Soyuz TMA-07M Spacecraft ISS034-E-010181 (21 Dec. 2012) As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. Credit: NASA. Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published October 2013 Please direct enquiries to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 7708 Fax: 519-888-0018 Email: [email protected] Governance Group Julie Crôteau Foreign Aairs and International Trade Canada Peter Hays Eisenhower Center for Space and Defense Studies Ram Jakhu Institute of Air and Space Law, McGill University Ajey Lele Institute for Defence Studies and Analyses Paul Meyer The Simons Foundation John Siebert Project Ploughshares Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research John Logsdon The George Washington University Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 10 Executive Summary PAGE 23 Theme 1: Condition of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the potential threats posed by near-Earth objects; the allocation of scarce space resources; and the ability to detect, track, identify, and catalog objects in outer space.
    [Show full text]
  • Hazard Analysis of Complex Spacecraft Using Systems- Theoretic Process Analysis *
    Hazard Analysis of Complex Spacecraft using Systems- Theoretic Process Analysis * Takuto Ishimatsu†, Nancy G. Leveson‡, John P. Thomas§, and Cody H. Fleming¶ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Masafumi Katahira#, Yuko Miyamoto**, and Ryo Ujiie†† Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505, Japan Haruka Nakao‡‡ and Nobuyuki Hoshino§§ Japan Manned Space Systems Corporation, Tsuchiura, Ibaraki 300-0033, Japan Abstract A new hazard analysis technique, called System-Theoretic Process Analysis, is capable of identifying potential hazardous design flaws, including software and system design errors and unsafe interactions among multiple system components. Detailed procedures for performing the hazard analysis were developed and the feasibility and utility of using it on complex systems was demonstrated by applying it to the Japanese Aerospace Exploration Agency H-II Transfer Vehicle. In a comparison of the results of this new hazard analysis technique to those of the standard fault tree analysis used in the design and certification of the H-II Transfer Vehicle, System-Theoretic Hazard Analysis found all the hazardous scenarios identified in the fault tree analysis as well as additional causal factors that had not been) identified by fault tree analysis. I. Introduction Spacecraft losses are increasing stemming from subtle and complex interactions among system components. The loss of the Mars Polar Lander is an example [1]. The problems arise primarily because the growing use of software allows engineers to build systems with a level of complexity that precludes exhaustive testing and thus assurance of the removal of all design errors prior to operational use [2,3] Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) were created long ago to analyze primarily electro-mechanical systems and identify potential losses due to component failure.
    [Show full text]
  • China's Long-Range View
    coverFEB2012FINAL_Layout 1 1/19/12 11:56 AM Page 1 2 AMERICA AEROSPACE February 2012 FEBRUARY 2012 FEBRUARY China’s long-range view Design for demise Orbiting twins tackle Moon’s mysteries A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS Support the AIAA Foundation CFC #53057 Impact, Inspire, Invest Our Vision A simple, compelling philosophy drives our commitment to education in science, technology, engineering, and math: Make it exciting, make it empowering, and make it fun. e AIAA Foundation: Advances STEM education through K–12 education programs, reaching more than 10,000 students each year. Prepares students for the workforce with merit-based scholarships and annual student conferences worldwide. Promotes professional achievement through our competitive honors and awards programs for industry professionals and educators. Fosters innovation as students and professionals participate in design competitions, paper competitions, and peer presentations. www.aiaafoundation.org 11-0638 aa ad.indd 1 9/9/11 2:15 PM TOC.FEB2012_AA Template 1/17/12 2:24 PM Page 1 February 2012 DEPARTMENTS EDITORIAL 3 Page 4 The power option. INTERNATIONAL BEAT 4 High-speed rail will impact airliner markets. ASIA UPDATE 8 China’s long-range view. WASHINGTON WATCH 12 ‘New’ defense strategy takes center stage. Page 20 CONVERSATIONS 16 With John Gedmark. ELECTRONICS UPDATE 20 Page 12 Man vs. machine: The future of electronic attack. ENGINEERING NOTEBOOK 24 Science spacecraft learn self-control. GREEN ENGINEERING 26 The greening of satellite propulsion. Page 24 OUT OF THE PAST 44 CAREER OPPORTUNITIES 46 FEATURES ORBITING TWINS TACKLE MOON’S MYSTERIES 32 By precisely measuring the Moon’s gravity, NASA’s twin GRAIL space- craft will also unlock secrets about Earth and other planets.
    [Show full text]
  • A Differential Games Approach for Analysis of Spacecraft Post-Docking Operations
    A DIFFERENTIAL GAMES APPROACH FOR ANALYSIS OF SPACECRAFT POST-DOCKING OPERATIONS By TAKASHI HIRAMATSU A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 c 2012 Takashi Hiramatsu 2 I dedicate this to everyone that helped me write this manuscript. 3 ACKNOWLEDGMENTS My biggest appreciation goes to my advisor Dr. Norman G. Fitz-Coy for his great help and support. Every time I talked to him he motivated me with critical responses and encouraged me whenever I was stuck in the middle of my research. I also thank my committee Dr. Warren Dixon, Dr. Gloria Wiens, and Dr. William Hager for their supports. Finally, I thank my colleagues in Space Systems Group and all other friends, who directly or indirectly helped me throughout the years I spent at University of Florida. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS..................................4 LIST OF TABLES......................................8 LIST OF FIGURES.....................................9 ABSTRACT......................................... 11 CHAPTER 1 INTRODUCTION................................... 13 1.1 Spacecraft Rendezvous and Docking..................... 13 1.1.1 Cooperative Scenarios......................... 14 1.1.2 Noncooperative Scenarios....................... 14 1.2 Small Satellites................................. 15 1.3 Game Theoretic Approach........................... 15 2 MATHEMATICAL BACKGROUND FOR THE APPROACH............ 18 2.1 Differential Games and Control Theory.................... 18 2.1.1 Minimax Strategy............................ 20 2.1.2 Nash Strategy.............................. 20 2.1.3 Stackelberg Strategy.......................... 21 2.1.4 Open-Loop Strategies for Two-Person Linear Quadratic Differential Games.................................. 23 2.2 Numerical Methods to Optimal Control Problem............... 24 2.3 Bilevel Programming.............................
    [Show full text]