Micro-Generation in Local Power Grids

Total Page:16

File Type:pdf, Size:1020Kb

Micro-Generation in Local Power Grids ISRN LUTMDN/TMHP-14/5307-SE ISSN 0282-1990 Micro-generation in local power grids Balancing intermittency with energy storage and demand response Karin Hansson och Sara Olsson Examensarbete på Civ.ingenjörsnivå Avdelningen för energihushållning Institutionen för Energivetenskaper Lunds Tekniska Högskola | Lunds Universitet Micro-generation in local power grids Balancing intermittency with energy storage and demand response Karin Hansson Sara Olsson Division of Efficient Energy Systems, Department of Energy Sciences Lund University - Faculty of Engineering 2014-06-17 Föreliggande examensarbete på civilingenjörsnivå har genomförts vid Avd. för Energihushållning, Inst för Energivetenskaper, Lunds Universitet - LTH samt vid E.ON Elnät Sverige AB i Malmö. Handledare på E.ON Elnät Sverige AB: Alf Larsen; handledare på LU-LTH: prof. Jurek Pyrko; examinator på LU-LTH: dr Patrick Lauenburg. Projektet har genomförts i samarbete med E.ON Elnät Sverige AB Examensarbete på Civilingenjörsnivå ISRN LUTMDN/TMHP-14/5307-SE ISSN 0282-1990 © 2014 Karin Hansson och Sara Olsson samt Energivetenskaper Energihushållning Institutionen för Energivetenskaper Lunds Universitet - Lunds Tekniska Högskola Box 118, 221 00 Lund www.energy.lth.se Abstract Global climate change has resulted in a need for an energy transition from fossil fuels towards renewable energy sources. Small scale power production, e.g. micro-generation from solar and wind, is an increasing part in this transition. These energy sources have a varying power output which does not always match the demand. This intermittent power generation poses challenges for the electricity grid which is conventionally dimensioned according to a rather predictable load. There are several ways to adapt the grid to these renewable and fluctuating energy sources; namely by curtailment of the generation, reinforcements and extensions of the grid, demand response and/or energy storage. This report has focused on how demand response and energy storage can balance the fluctuations in a local power grid with a high penetration of micro-generation from photovoltaics and small wind turbines. To answer this, both a literature study and a case study of a planned city-district in Malmö, i.e. Hyllie, have been performed. Main results are that the load from micro-generation in a residential area will significantly exceed the demand at certain occasions, mainly during noon in summer. If the area consists of a mix of commercial and residential loads, the capacity limits of the grid will not be exceeded. The most promising solutions to handle loads that exceed the capacity of a local grid are batteries and critical peak pricing. Currently, and likely in the near future, batteries are considerably more expensive than grid extensions. Also, the ownership of energy storages is limited for a grid operator. Recommendations for the future is to account for micro-generation when planning a local grid with undiversified demand profiles as the production can exceed the demand and hence the grid capacity. Keywords Micro-generation, DSO, energy storage, demand response, power variations i Sammanfattning Den globala klimatförändringen har lett till ett behov av en energiomställning från fossila till förnybara energikällor. Småskalig elproduktion, såsom mikroproduktion från sol och vind, spelar en allt större roll i denna omställning. Dessa energikällor ger en varierande elproduktion som inte alltid överensstämmer med efterfrågan. Denna intermittenta elproduktion innebär utmaningar för elnätet som konventionellt är dimensionerat enligt en ganska förutsägbar belastning. Det finns flera sätt att justera elnätet till dessa fluktuerande energikällor, nämligen; styra ned produktionen, förstärka eller bygga ut elnätet, laststyrning och/eller energilager. Denna rapport har fokuserat på hur laststyrning och energilager kan balansera variationerna i ett lokalt elnät med en hög andel mikroproduktion från solceller och småskaliga vindkraftverk. För att undersöka detta, har både en litteraturstudie av möjliga lösningar, samt en fallstudie av en planerad stadsdel i Malmö, d.v.s. Hyllie, utförts. De viktigaste resultaten från denna studie är att belastningen från mikroproduktionen i ett bostadsområde väsentligt kan komma att överstiga efterfrågan vid vissa tillfällen, huvudsakligen mitt på dagen under sommartid. Om området däremot består av en blandning av bostäder och kommersiella verksamheter, kommer belastningen inte att överskrida kapacitetsgränsen i nätet. De mest lovande lösningarna för att hantera laster som överstiger nätkapaciteten i ett lokalt elnät är batterier och kritisk topp-prissättning. För närvarande, och troligen inom den närmsta framtiden, är batterier betydligt dyrare än nätutbyggnad. Dessutom är ägandet av energilager begränsat för nätägaren. Rekommendationer för framtiden är att mikroproduktion bör tas i beaktning vid planeringen av ett lokalt elnät med bostadslast, då produktionen i detta fall kan överstiga nätkapaciteten. Nyckelord Mikroproduktion, nätägare, energilager, laststyrning, effektvariationer ii Preface This report is a master thesis of 2 x 30 ECTS credits performed during the completion of the MSc in Environmental Engineering at the Faculty of Engineering LTH. Energy system has been the specialisation of the authors’ Master’s program. The work, which has been performed on behalf of E.ON, is in line with the company’s strategy of cleaner and better energy. The thesis was carried out under supervision from Alf Larsen, E.ON Elnät Sverige AB and prof. Jurek Pyrko, Lund University. iii Acknowledgements We would like to thank our supervisors Alf Larsen at E.ON and prof. Jurek Pyrko at Lund University, Faculty of Engineering for guiding and pushing us in the right direction during the process. We are also grateful to Anders Gustafsson and Patrik Vukalic, both at E.ON, for assistance in understanding how the electricity grid is planned and operated. Ingmar Leiβe has shown a great commitment and has been a valuable support concerning all electro-technical issues. Remigiusz Pluciennik and his associates at E.DIS in Germany and PhD Lars Henrik Hansen at DONG Energy in Denmark have hosted our study visits and provided eye-opening experiences from other countries. We would also like to thank Magnus Hjern, John Blomsterlind, Anna Lundsgård, Magnus Lindström and Peder Berne at E.ON for indispensable input and data. Last but not least, many thanks to all the staff at E.ON Elnät in Malmö for a friendly reception and a valuable experience! iv List of abbreviations CAES – Compressed air energy storage CPP – Critical peak pricing DR – Demand response DSO – Distribution System Operator EV – Electric vehicle Li-ion – Lithium ion NaS – Sodium sulphate Pb-acid – Lead acid PV – Photovoltaic RES – Renewable energy source SEA – Swedish Electricity Act SMES – Superconducting magnetic energy storage SvK – Svenska Kraftnät T&D – Transmission and distribution TSO – Transmission System Operator V2G – Vehicle to grid v Content 1 Introduction ................................................................................................................................... 1 1.1 Purpose .................................................................................................................................. 1 1.2 Research questions ............................................................................................................... 2 1.3 Methods ................................................................................................................................. 2 1.4 Constrains .............................................................................................................................. 3 2 Background ................................................................................................................................... 5 2.1 Micro-generation .................................................................................................................. 5 2.1.1 PV .................................................................................................................................... 6 2.1.2 Wind power ................................................................................................................... 8 2.2 The Swedish power grid .................................................................................................... 10 2.2.1 Microgrid ..................................................................................................................... 11 2.2.2 Balance responsibility ................................................................................................ 12 2.3 Load and generation duration curve ............................................................................... 12 2.4 Power quality ...................................................................................................................... 14 3 Literature study .......................................................................................................................... 15 3.1 Energy storage possibilities ............................................................................................... 15 3.1.1 Mechanical storage ..................................................................................................... 16 3.1.2 Electrical storage ......................................................................................................... 19 3.1.3 Electrochemical storage ............................................................................................
Recommended publications
  • Microgeneration, Energy Storage, Power Converters and the Regulation of Voltage and Frequency in the Low Voltage Grid
    1 Microgeneration, Energy Storage, Power Converters and the regulation of voltage and frequency in the Low Voltage Grid Manuel Campos Nunes, Instituto Superior Técnico, Universidade de Lisboa. in order to reduce the emission of greenhouse gases, focusing Abstract— This paper focuses on the study and development of on the other hand on sustainable energy and energy efficiency a system composed by Microgeneration (MG) and energy storage (e.g Kyoto Protocol or EU2020 [1]). (ES), which together with other similar systems, might avoid over- Many countries offered big incentives for renewable energy and undervoltages, as well as mitigate voltage dips. The system generation. Consequently MG, most of the times using RES, may use the stored energy on deferred. These systems are expected to contribute to the regulation of the voltage and frequency of a has become increasingly popular and distributed generation low voltage grid, especially in the case of an isolated grid. (DG) is part of the electrical grid nowadays. However despite The increase of distributed generation, using mainly renewable all benefits of DG (economical, environmental, reduce of losses energy sources (RES), motivated some technical and operational etc.), it motivates some technical issues and contributes to the issues that have to be approached. Despite all the benefits of deterioration of electric power quality. The electric power distributed generation and renewable energy, the intermittent system changed a lot with the introduction of DG, which character of such type of source and the mismatch between supply and demand might lead to some problems in reliability and consequently leads to a new paradigm with bidirectional power stability of the grid, and to an inefficient use of RES.
    [Show full text]
  • An Overview of Energy Storage Opportunities for Massachusetts Commercial Buildings
    AN OVERVIEW OF ENERGY APRIL 2018 STORAGE OPPORTUNITIES OVERVIEW FOR MASSACHUSETTS COMMERCIAL BUILDINGS ABETC1-50150 OV-Storage.indd 1 4/6/18 10:48 AM 2 A BETTER CITY AN OVERVIEW OF ENERGY STORAGE OPPORTUNITIES FOR MASSACHUSETTS COMMERCIAL BUILDINGS ACKNOWLEDGMENTS This joint A Better City/Boston Green Ribbon Commission publication would not be possible without generous funding support from the Barr Foundation. REPORT TEAM A Better City CONTENTS • Yve Torrie Meister Consultants Group, A Cadmus Company 3 Introduction • Will Hanley 5 Energy Storage History • Kathryn Wright 5 Energy Storage Types and Terminology REVIEWERS 6 Services fnd Benefits 9 Technology Options • Ward Bower, Ward Bower Innovations LLC 11 Environmental Considerations • John Cleveland, Boston Green Ribbon Commission 11 Resilience Considerations • Meredith Hatfield, The Barr Foundation 11 Incentives and Support for Project • Lars Lisell, Resilient Energy Systems, Implementation National Renewable Energy Laboratory • Seth Mullendore, Clean Energy Group 14 Market Barriers and Policy Opportunities • Galen Nelson, Massachusetts Clean Energy Center 17 Endnotes • Kavita Ravi, Massachusetts Clean Energy Center 19 Photo Credits To view a hyperlinked version of this report online, go to http://www.abettercity.org/assets/images/ An_Overview_of_Energy_Storage_Opportunities.pdf A Better City is a diverse group of business leaders united around a common goal—to enhance Boston and the region’s economic health, competitiveness, vibrancy, sustainability and quality of life. By ampli- fying the voice of the business community through collaboration and consensus across a broad range of stakeholders, A Better City develops solutions and influences policy in three critical areas central to the Boston region’s economic competitiveness and growth: transportation and infrastructure, land Design: David Gerratt/NonprofitDesign.com use and development, and energy and environment.
    [Show full text]
  • Residential Demand Response in the Power System
    RESIDENTIAL DEMAND RESPONSE IN THE POWER SYSTEM A thesis submitted to CARDIFF UNIVERSITY for the degree of DOCTOR OF PHILOSOPHY 2015 Silviu Nistor School of Engineering I Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ………………………………………… (candidate) Date ………………………… This thesis is being submitted in partial fulfillment of the requirements for the degree of …………………………(insert MCh, MD, MPhil, PhD etc, as appropriate) Signed ………………………………………… (candidate) Date ………………………… This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………………………………… (candidate) Date ………………………… I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed ………………………………………… (candidate) Date ………………………… II Abstract Demand response (DR) is able to contribute to the secure and efficient operation of power systems. The implications of adopting the residential DR through smart appliances (SAs) were investigated from the perspective of three actors: customer, distribution network operator, and transmission system operator. The types of SAs considered in the investigation are: washing machines, dish washers and tumble dryers. A mathematical model was developed to describe the operation of SAs including load management features: start delay and cycle interruption. The optimal scheduling of SAs considering user behaviour and multiple-rates electricity tariffs was investigated using the optimisation software CPLEX.
    [Show full text]
  • Passive Solar Design
    An Educational Reader from Solar Schoolhouse WHAT’S INSIDE Take a Solar Home Tour ........................ 2 Tracking the Earth’s Path ....................... 4 Heating Things Up ............................... 5 Passive Solar Design ............................ 6 Solar Hot Water .................................. 7 What is Photovoltaics? .......................... 8 How Photovoltaics Works ...................... 9 Cooking with Sunlight ......................... 10 Solar Fountains Run by the Sun............ 12 Building a Model Solar Village .............. 13 Solar Student Builders ........................ 14 The Next Generation of Solar Homes .... 15 Solar Laundromat .............................. 15 Sun & Games ................................... 16 solarschoolhouse.org Using the Sun to Heat, Cool and Power Your Home Sponsored by: P Take a Solar Home Tour On the outside this house looks like many others. Walking past Solar-assisted hot water it, you might not even know it was a solar home. However, once system heats water and you examine the details of its design and construction, you’ll see contributes to space heating. that for this house, its all about the Sun! Deciduous trees shade the house in summer and let the Sun’s warmth heat the house in the winter when their leaves have fallen off. Solar panels on the roof generate electricity used for lighting and appliances. Extra insulation in the roof and walls. Front overhang shades the house from the hot summer Sun, keeping it cool. Low-e windows insulate the house from fluctuations in temperature. South facing windows absorb the solarschoolhouse.org warmth of the Sun in the winter. Drought resistant landscaping A backyard clothesline lets the and water efficient irrigation Sun dry clothes energy free. uses less water than a lawn. 2 Your Solar Home Educational Reader Heavy duty blown-in recycled cellulose insulation acts as a barrier between indoor and outdoor temperatures.
    [Show full text]
  • Diversity Factor Calculation Example
    Diversity Factor Calculation Example Didymous and vulgar Geri underexposes her feints compartmentalizes rightly or tritiate inductively, is Nathanil maroonedbloodstained? Oran Conative overdrove Matteo her placidness substantializes enmesh that while twistings Lawerence confide sovietizenights and some frequents flowing morphologically. philosophically. Precognitive and Mccs that are still operating occurrences in a vacuum as a driving the electrical system investments are getting all about diversity factor calculation You can check about working of energy meter in the pagan manner. Only simple static composite load models are described. What drug the mansion of 1 unit? In an ideal world, estimating your electricity usage would be as easy as looking at an itemized grocery receipt. Two sets of diversity factors one for peak cooling load calculations and. Because desktop computer programs while calculating available data used in calculations required confidence in? If they contribute significantly between different. CUSTOMER CARE UndERSTAnding LOAd FACTOR Austin. Cu or all its ip code allows some examples. This arrangement is convenientfor motor circuits. Submitted for publication in connect and Technology for the Built Environment. Establish consistentmethods for residential water heating for hours gives an academic setting up. When the event of a sale occurs, unit costs will then be matched with revenue and reported on the income statement. An HVAC diversity factor which relates to protect thermal characteristics of science facility's. Two general approaches are used to capturthe timevarying value of electricity savings. Electrical Load Characteristics. Before presenting the results, it is justice to give brief overview and the specific parameters used in agile different calculation methods. Although TRMs often provide industryaccepted values or algorithms forcalculatingsavingsusers should not shine that an algorithm is correct because my has been used elsewhere.
    [Show full text]
  • Q Demand Factor Is Defined As a Object Oriented Design Always Dominates the Structural Design a Maximum Demand X Connected Load
    These are sample MCQs to indicate pattern, may or may not appear in examination G.M. VEDAK INSTITUTE OF TECHNOLOGY Program: Mechanical Engineering Curriculum Scheme: Revised 2016 Examination: Final Year Semester VIII Course Code:MEDLO8041 and Course Name: PPE Time: 1 hour Max. Marks: 50 Q Demand factor is defined as A Object oriented design always dominates the structural design A Maximum demand X Connected load A Maximum demand/ Connected laod A Connected laod/Maximum demand Q Load factor is defined as A Average load/Maximum demand A Average load X Maximum demand A Maximum demand/Average laod A Maximum demand X Connected load Q Diversity factor is always A Equal to unity A More than unity A More than than twenty A Less than unity Q Load factor for heavy industries may be taken as A 10 to 15% A 15 to 40% A 50 to 70% A 70 to 80% Q Which of the following is not suitable to use as peak plant? A Hydroelectric power plant A Gas power plant A Diesel elected plant A Nuclear power plant Q Which of the following power plant cannot be used as base load plant? A Diesel power plant A Hydroelectric power plant A Nuclear power plant A Thermal power plant The system supplying base and peak loads will be more economical if power is supplied by _________ Q A Only gas turbine power plant A Only thermal power plant A Only Diesel power plant A Combined operation of various power plants Q Load factor of power station is generally A Less then unity A Equal to unity A More than unity A More than Ten Q Diversity factor is defined as A Sum of individual maximum demands/Maximum demand of entire group A Maximum demand of entire group/Sum of individual maximum demands A Maximum demand of entire group X Sum of individual maximum demands A Maximum demand of entire group + Sum of individual maximum demands Q In order to have lower cost of electrical energy generation A The load factor and diversity factor should be low.
    [Show full text]
  • Micro Generation and Customer Side Smart Grid Infrastructures
    Micro Generation and Customer Side Smart Grid Infrastructures Thomas M. Korman1, Ph.D., P.E., 1Professor, Construction Management Department, California Polytechnic State University, San Luis Obispo, CA 93407-0284 (805-270-5072, [email protected]) ABSTRACT: The implementation of the Smart Grid is gradually changing the nature of the electrical distribution system in the United States. With the Smart Grid, electrical power generation and distribution is becoming a two-way process between customers and generators. Being a bi-way process, there are two sides of the smart grid; the first being the utility side and second being the customer side. As the utility side smart grid is implemented, customers will have the opportunity to tailor their electrical power usage and reduce energy consumption costs through the customer side components of the smart grid. This includes energy management systems, micro-generation, and energy storage systems. This presents many new opportunities for electrical contractors to enhance existing systems in residential, commercial, and industrial facilities. This paper focuses on the wide range of energy management applications and electrical service provider interactions, including: On-site generation, Demand response, Electrical storage, Peak demand management, Forward power usage estimation, Load shedding capability estimation, End load monitoring (sub metering), Power quality of service monitoring, Utilization of historical energy consumption data, and Responsive energy control. INTRODUCTION Many consider traditional building systems to be ineffective at automatically adjusting to user needs because they require complex programming that is not flexible or adaptable with changing environments and different end users. Smart grid technologies, however, are designed to be adaptive and self-programing to the needs of the user.
    [Show full text]
  • Grid Energy Storage
    Grid Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). Table of Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 4 1.0 Introduction .......................................................................................................................................... 7 2.0 State of Energy Storage in US and Abroad .......................................................................................... 11 3.0 Grid Scale Energy Storage Applications .............................................................................................. 20 4.0 Summary of Key Barriers ..................................................................................................................... 30 5.0Energy Storage Strategic Goals .......................................................................................................... 32 6.0 Implementation of its Goals ...............................................................................................................
    [Show full text]
  • An Interdisciplinary Review of Energy Storage for Communities
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@Nottingham 1 An interdisciplinary review of energy storage for 2 communities: challenges and perspectives a1 b b c d 3 David Parra , Maciej Swierczynski , Daniel I. Stroe , Stuart. A. Norman , Andreas Abdon , Mis en forme : Polonais 4 Jörg Worlitschekd, Travis O’Dohertye2, Lucelia Rodriguese, Mark Gillotte, Xiaojin Zhangf, Mis en forme : Polonais 5 Christian Bauerf, Martin K. Patela. Mis en forme : Polonais 6 a Energy Efficiency Group, Institute for Environmental Sciences and Forel Institute, University 7 of Geneva, Boulevard Carl-Vogt 66, 1205 Genève, Switzerland 8 b Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, Aalborg 9 9220, Denmark 10 c E.ON UK plc. Ratcliffe on Soar, Nottingham NG11 0EE, UK 11 d Lucerne University of Applied Sciences & Arts. Technikumstrasse 21, 6048, Horw, 12 Switzerland 13 e Department of Architecture and Built Environment, Faculty of Engineering, University of 14 Nottingham, University Park, NG72RD UK 15 f Technology Assessment Group, Paul Scherrer Institut, Villigen PSI, Switzerland 16 Abstract 17 Given the increasing penetration of renewable energy technologies as distributed generation 18 embedded in the consumption centres, there is growing interest in energy storage systems 19 located very close to consumers. These systems allow to increase the amount of renewable 20 energy generation consumed locally, they provide opportunities for demand-side 21 management and help to decarbonise the electricity, heating and transport sectors. 22 In this paper, the authors present an interdisciplinary review of community energy storage 23 (CES) with a focus on its potential role and challenges as a key element within the wider 24 energy system.
    [Show full text]
  • USAID Energy Storage Decision Guide for Policymakers
    USAID ENERGY STORAGE FOR DECISION GUIDE POLICYMAKERS www.greeningthegrid.org | www.nrel.gov/usaid-partnership USAID ENERGY STORAGE FO R DECISION GUIDE P OLICYMAKERS Authors Ilya Chernyakhovskiy, Thomas Bowen, Carishma Gokhale-Welch, Owen Zinaman National Renewable Energy Laboratory July 2021 View the companion report: USAID Grid-Scale Energy Storage Technologies Primer www.greeningthegrid.org | www.nrel.gov/usaid-partnership Prepared by NOTICE This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. IAG-17-2050. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Front cover: photo from iStock 506609532; Back cover: photo from iStock 506611252 NREL prints on paper that contains recycled content. Acknowledgments The authors are greatly indebted to several individuals for their support and guidance. We wish to thank Sarah Lawson, Andrew Fang, and Sarah Dimson at the U.S. Agency for International Development (USAID) for their thoughtful reviews. We also wish to thank Peerapat Vithayasrichareon, Jacques Warichet, Enrique Gutierrez Tavarez, and Luis Lopez at the International Energy Agency, and Dr.
    [Show full text]
  • VIPV Position Paper Final Version.Pdf
    VIPV Position Paper Vehicle-integrated Photovoltaics (VIPV) as a core source for electricity in road transport Lightyear One, 2019 Content 1. Political Context............................................................................................................................... 1 2. Introduction to the VIPV Market ..................................................................................................... 2 2.1 Passenger Cars ............................................................................................................................... 3 2.2 Light- and Heavy-Duty Vehicles ..................................................................................................... 5 3. The Motivation for VIPV .................................................................................................................. 6 3.1 General Benefits of VIPV ............................................................................................................... 6 3.2 VIPV Energy Flow Model ............................................................................................................... 8 3.3 Environmental Benefits in Comparison to the German Grid Mix ................................................. 9 4. Requirements and To-Dos for VIPV ............................................................................................... 11 4.1 Important Selection Criteria for VIPV .......................................................................................... 11 4.2 Technological Requirements
    [Show full text]
  • Harnessing the Potential of Energy Storage Storage Technologies, Services, and Policy Recommendations
    Harnessing the Potential of Energy Storage Storage Technologies, Services, and Policy Recommendations May 2017 Harnessing the Potential Of Energy Storage Storage Technologies, Services, and Policy Recommendations Prepared by: Edison Electric Institute May 2017 This report was prepared through a collaborative process by members of EEI's Energy Storage Task Force. If you have any questions, comments or concerns, please contact: Alison Williams Manager, Clean Energy 202-508-5026 [email protected] Lola Infante, PhD Sr. Director, Generation Fuels and Market Analysis 202-508-5133 [email protected] © 2017 by the Edison Electric Institute (EEI). All rights reserved. Published 2017. Printed in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system or method, now known or hereinafter invented or adopted, without the express prior written permission of the Edison Electric Institute. Attribution Notice and Disclaimer This work was prepared by the Edison Electric Institute (EEI). When used as a reference, attribution to EEI is requested. EEI, any member of EEI, and any person acting on its behalf (a) does not make any warranty, express or implied, with respect to the accuracy, completeness or usefulness of the information, advice or recommendations contained in this work, and (b) does not assume and expressly disclaims any liability with respect to the use of, or for damages resulting from the use of any information, advice or recommendations contained in this work. The views and opinions expressed in this work do not necessarily reflect those of EEI or any member of EEI.
    [Show full text]