Micro Generation and Customer Side Smart Grid Infrastructures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role and Status of Hydrogen and Fuel Cells Across the Global Energy System
The role and status of hydrogen and fuel cells across the global energy system Iain Staffell(a), Daniel Scamman(b), Anthony Velazquez Abad(b), Paul Balcombe(c), Paul E. Dodds(b), Paul Ekins(b), Nilay Shah(d) and Kate R. Ward(a). (a) Centre for Environmental Policy, Imperial College London, London SW7 1NE. (b) UCL Institute for Sustainable Resources, University College London, London WC1H 0NN. (c) Sustainable Gas Institute, Imperial College London, SW7 1NA. (d) Centre for Process Systems Engineering, Dept of Chemical Engineering, Imperial College London, London SW7 2AZ. Abstract Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. -
Fuel Cell Technology for Domestic Built Environment Applications: State Of-The-Art Review
FUEL CELL TECHNOLOGY FOR DOMESTIC BUILT ENVIRONMENT APPLICATIONS: STATE OF-THE-ART REVIEW Theo Elmer*, Mark Worall, Shenyi Wu and Saffa Riffat Architecture, Climate and Environment Research Group The University of Nottingham, NG7 2RD (UK) *corresponding author email: [email protected] ABSTRACT Fuel cells produce heat when generating electricity, thus they are of particular interest for combined heat and power (CHP) and combined cooling heat and power (CCHP) applications, also known as tri-generation systems. CHP and tri-generation systems offer high energy conversion efficiency and hence the potential to reduce fuel costs and CO2 emissions. This paper serves to provide a state-of-the-art review of fuel cell technology operating in the domestic built environment in CHP and tri-generation system applications. The review aims to carry out an assessment of the following topics: (1) the operational advantages fuel cells offer in CHP and tri-generation system configurations, specifically, compared to conventional combustion based technologies such as Stirling engines, (2) how decarbonisation, running cost and energy security in the domestic built environment may be addressed through the use of fuel cell technology, and (3) what has been done to date and what needs to be done in the future. The paper commences with a review of fuel cell technology, then moves on to examine fuel cell CHP systems operating in the domestic built environment, and finally explores fuel cell tri-generation systems in domestic built environment applications. The paper concludes with an assessment of the present development of, and future challenges for, domestic fuel cells operating in CHP and tri-generation systems. -
An Overview of Energy Storage Opportunities for Massachusetts Commercial Buildings
AN OVERVIEW OF ENERGY APRIL 2018 STORAGE OPPORTUNITIES OVERVIEW FOR MASSACHUSETTS COMMERCIAL BUILDINGS ABETC1-50150 OV-Storage.indd 1 4/6/18 10:48 AM 2 A BETTER CITY AN OVERVIEW OF ENERGY STORAGE OPPORTUNITIES FOR MASSACHUSETTS COMMERCIAL BUILDINGS ACKNOWLEDGMENTS This joint A Better City/Boston Green Ribbon Commission publication would not be possible without generous funding support from the Barr Foundation. REPORT TEAM A Better City CONTENTS • Yve Torrie Meister Consultants Group, A Cadmus Company 3 Introduction • Will Hanley 5 Energy Storage History • Kathryn Wright 5 Energy Storage Types and Terminology REVIEWERS 6 Services fnd Benefits 9 Technology Options • Ward Bower, Ward Bower Innovations LLC 11 Environmental Considerations • John Cleveland, Boston Green Ribbon Commission 11 Resilience Considerations • Meredith Hatfield, The Barr Foundation 11 Incentives and Support for Project • Lars Lisell, Resilient Energy Systems, Implementation National Renewable Energy Laboratory • Seth Mullendore, Clean Energy Group 14 Market Barriers and Policy Opportunities • Galen Nelson, Massachusetts Clean Energy Center 17 Endnotes • Kavita Ravi, Massachusetts Clean Energy Center 19 Photo Credits To view a hyperlinked version of this report online, go to http://www.abettercity.org/assets/images/ An_Overview_of_Energy_Storage_Opportunities.pdf A Better City is a diverse group of business leaders united around a common goal—to enhance Boston and the region’s economic health, competitiveness, vibrancy, sustainability and quality of life. By ampli- fying the voice of the business community through collaboration and consensus across a broad range of stakeholders, A Better City develops solutions and influences policy in three critical areas central to the Boston region’s economic competitiveness and growth: transportation and infrastructure, land Design: David Gerratt/NonprofitDesign.com use and development, and energy and environment. -
State of the States 2010: Fuel Cells in America
2010 State of the States: Fuel Cells in America Authors and Acknowledgements This report was written and compiled by Sandra Curtin, Elizabeth Delmont and Jennifer Gangi of Fuel Cells 2000, an activity of Breakthrough Technologies Institute in Washington, DC, with significant contribution from Semee Jang and Brian Woodlock. Support was provided by the US Department of Energy’s Fuel Cell Technologies Program. About This Report The information contained in this report was collected from public records, websites and contact with state and industry representatives as of April 2010, particularly the State Fuel Cell and Hydrogen Database (http://www.fuelcells.org/info/statedatabase.html) and North Carolina Solar Center's Database of State Incentives for Renewables & Efficiency (DSIRE - http://www.dsireusa.org/). To the best of our knowledge, fuel cell installations listed are currently active unless otherwise marked. Front Cover Photos: Top right: Three fuel cell buses demonstrated at Chicago Transit Agency Middle left: Four 250-kW FuelCell Energy DFC fuel cell systems at the Sheraton San Diego Hotel Middle right: Plug Power GenDrive™ fuel cell powered forklift Bottom left: ClearEdge Power residential fuel cell system Bottom right: General Motors Chevy Equinox fuel cell vehicle 1 Contents Fuel Cells: Here Today ........................................................................................................................4 Highlights by Region........................................................................................................................ -
Grid Energy Storage
Grid Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). Table of Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 4 1.0 Introduction .......................................................................................................................................... 7 2.0 State of Energy Storage in US and Abroad .......................................................................................... 11 3.0 Grid Scale Energy Storage Applications .............................................................................................. 20 4.0 Summary of Key Barriers ..................................................................................................................... 30 5.0Energy Storage Strategic Goals .......................................................................................................... 32 6.0 Implementation of its Goals ............................................................................................................... -
An Interdisciplinary Review of Energy Storage for Communities
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@Nottingham 1 An interdisciplinary review of energy storage for 2 communities: challenges and perspectives a1 b b c d 3 David Parra , Maciej Swierczynski , Daniel I. Stroe , Stuart. A. Norman , Andreas Abdon , Mis en forme : Polonais 4 Jörg Worlitschekd, Travis O’Dohertye2, Lucelia Rodriguese, Mark Gillotte, Xiaojin Zhangf, Mis en forme : Polonais 5 Christian Bauerf, Martin K. Patela. Mis en forme : Polonais 6 a Energy Efficiency Group, Institute for Environmental Sciences and Forel Institute, University 7 of Geneva, Boulevard Carl-Vogt 66, 1205 Genève, Switzerland 8 b Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, Aalborg 9 9220, Denmark 10 c E.ON UK plc. Ratcliffe on Soar, Nottingham NG11 0EE, UK 11 d Lucerne University of Applied Sciences & Arts. Technikumstrasse 21, 6048, Horw, 12 Switzerland 13 e Department of Architecture and Built Environment, Faculty of Engineering, University of 14 Nottingham, University Park, NG72RD UK 15 f Technology Assessment Group, Paul Scherrer Institut, Villigen PSI, Switzerland 16 Abstract 17 Given the increasing penetration of renewable energy technologies as distributed generation 18 embedded in the consumption centres, there is growing interest in energy storage systems 19 located very close to consumers. These systems allow to increase the amount of renewable 20 energy generation consumed locally, they provide opportunities for demand-side 21 management and help to decarbonise the electricity, heating and transport sectors. 22 In this paper, the authors present an interdisciplinary review of community energy storage 23 (CES) with a focus on its potential role and challenges as a key element within the wider 24 energy system. -
USAID Energy Storage Decision Guide for Policymakers
USAID ENERGY STORAGE FOR DECISION GUIDE POLICYMAKERS www.greeningthegrid.org | www.nrel.gov/usaid-partnership USAID ENERGY STORAGE FO R DECISION GUIDE P OLICYMAKERS Authors Ilya Chernyakhovskiy, Thomas Bowen, Carishma Gokhale-Welch, Owen Zinaman National Renewable Energy Laboratory July 2021 View the companion report: USAID Grid-Scale Energy Storage Technologies Primer www.greeningthegrid.org | www.nrel.gov/usaid-partnership Prepared by NOTICE This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. IAG-17-2050. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Front cover: photo from iStock 506609532; Back cover: photo from iStock 506611252 NREL prints on paper that contains recycled content. Acknowledgments The authors are greatly indebted to several individuals for their support and guidance. We wish to thank Sarah Lawson, Andrew Fang, and Sarah Dimson at the U.S. Agency for International Development (USAID) for their thoughtful reviews. We also wish to thank Peerapat Vithayasrichareon, Jacques Warichet, Enrique Gutierrez Tavarez, and Luis Lopez at the International Energy Agency, and Dr. -
Harnessing the Potential of Energy Storage Storage Technologies, Services, and Policy Recommendations
Harnessing the Potential of Energy Storage Storage Technologies, Services, and Policy Recommendations May 2017 Harnessing the Potential Of Energy Storage Storage Technologies, Services, and Policy Recommendations Prepared by: Edison Electric Institute May 2017 This report was prepared through a collaborative process by members of EEI's Energy Storage Task Force. If you have any questions, comments or concerns, please contact: Alison Williams Manager, Clean Energy 202-508-5026 [email protected] Lola Infante, PhD Sr. Director, Generation Fuels and Market Analysis 202-508-5133 [email protected] © 2017 by the Edison Electric Institute (EEI). All rights reserved. Published 2017. Printed in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system or method, now known or hereinafter invented or adopted, without the express prior written permission of the Edison Electric Institute. Attribution Notice and Disclaimer This work was prepared by the Edison Electric Institute (EEI). When used as a reference, attribution to EEI is requested. EEI, any member of EEI, and any person acting on its behalf (a) does not make any warranty, express or implied, with respect to the accuracy, completeness or usefulness of the information, advice or recommendations contained in this work, and (b) does not assume and expressly disclaims any liability with respect to the use of, or for damages resulting from the use of any information, advice or recommendations contained in this work. The views and opinions expressed in this work do not necessarily reflect those of EEI or any member of EEI. -
Middle School Activity Guide 3/22/04 11:33 AM Page 1 TABLE of CONTENTS
Middle School Activity Guide 3/22/04 11:33 AM Page 1 TABLE OF CONTENTS Table of Contents INTRODUCTION a.Welcome to the World of Hydrogen and Fuel Cells!....................................................................1 b. Knowledge Inventories i. Pre-Knowledge Inventory ......................................................................................................3 ii. Post-Knowledge Inventory ....................................................................................................5 HYDROGEN a. Introductory Activity — Mystery Scientist: Henry Cavendish ..................................................7 b. Hydrogen Mini-Lesson ..............................................................................................................11 c. How Do We Produce Hydrogen, Deliver, and Store Hydrogen? ..............................................15 i. Slide Show Activity Sheet......................................................................................................19 ii. Slide Show Activity Answer Sheet ......................................................................................21 iii. Slide Show Slides and Script ..............................................................................................23 iv. Electrolysis Experiment ......................................................................................................45 v. Electrolysis Experiment Activity Sheet ..............................................................................51 vi. Electrolysis Experiment Activity -
Energy Storage Keeping Smart Grids in Balance Reliable Power, Where and When It’S Needed
Overview brochure Energy Storage Keeping smart grids in balance Reliable power, where and when it’s needed Energy storage is not a new concept in itself. It has sources may be located anywhere on the grid, perhaps close been an integral component of electricity generation, to the load centers they serve, dispersed across the network, transmission and distribution systems for well over a or even in remote locations far offshore or in deserts. century. Traditionally, energy storage needs have been met by the physical storage of fuel for fossil-fuelled Such fundamental changes in the architecture and power plants, by keeping some capacity in reserve and controllability of the grid call for smart, efficient power through large scale pumped hydro storage plants. transmission and distribution networks. And they require the storage of energy at appropriate times and locations – But now the power landscape is changing dramatically with a both to balance the ‘ebb and flow’ between generation and move to ‘fuel-free’ power, mainly in the form of wind and solar consumption and also to maintain grid stability. photovoltaic (PV). This shift to renewable sources is good for the environment and sustainability. However, it also makes Increasing the use of traditional methods of building delivering power reliably where and when it’s needed a bigger storage capacity into the grid – fossil-fuelled peaking plants challenge than ever before. Since there is no fuel to store, or providing spinning reserve – would reduce the very the grid must adapt to store electrical energy efficiently after environmental benefits that renewable power sources are it is generated. -
Energy Storage in Grids with High Penetration of Variable Generation
Energy Storage in Grids with High Penetration of Variable Generation Grid-level energy storage is likely to dominate the conversation in the power industry in the coming years, just like renewable energy did in the past 2 decades. This report targets investors, developers, utility planners, power sector policy makers, and readers who wish to understand the role energy storage is likely to play in the smart grid of the future. For developing countries, the report provides an introduction to the necessary technical background on energy storage, the role it is likely to play as penetration of renewable energy increases in the grid, and the policy prescriptions to realize the wide range of benefits of energy storage. About the Asian Development Bank ADB’s vision is an Asia and Pacific region free of poverty. Its mission is to help its developing member countries reduce poverty and improve the quality of life of their people. Despite the region’s many successes, it remains home to a large share of the world’s poor. ADB is committed to reducing poverty through inclusive economic growth, environmentally sustainable growth, and regional integration. Based in Manila, ADB is owned by 67 members, including 48 from the region. Its main instruments for helping its developing member countries are policy dialogue, loans, equity investments, guarantees, grants, and technical assistance. ENERGY STORAGE IN GRIDS WITH HIGH PENETRATION OF VARIABLE GENERATION ASIAN DEVELOPMENT BANK 6 ADB Avenue, Mandaluyong City 1550 Metro Manila. Philippines ASIAN DEVELOPMENT BANK www.adb.org ENERGY STORAGE IN GRIDS WITH HIGH PENETRATION OF VARIABLE GENERATION FEBRUARY 2017 Pramod Jain ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2017 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 632 4444; Fax +63 2 636 2444 www.adb.org Some rights reserved. -
Making Sense of Energy Storage
Making Sense of Energy Storage How Storage Technologies Can Support a Renewable Future Making Sense of Energy Storage How Storage Technologies Can Support a Renewable Future Written by: Elizabeth Berg and Abi Bradford Frontier Group Rob Sargent Environment America Research & Policy Center December 2017 Acknowledgments Environment America Research & Policy Center thanks Todd Olinsky-Paul of the Clean Energy States Alliance, Sara Baldwin Auck of the Interstate Renewable Energy Council, Katherine Hamilton of 38 North Solutions, Nitzan Goldberger of the Energy Storage Association, and Rob Gramlich of Grid Strategies LLC for their review of drafts of this document, as well as their insights and suggestions. Thanks also to Tony Dutzik and Katherine Eshel of Frontier Group for editorial support. The authors bear responsibility for any factual errors. The recommendations are those of Environment America Research & Policy Center. The views expressed in this report are those of the authors and do not necessarily reflect the views of our funders or those who provided review. 2017 Environment America Research & Policy Center. Some Rights Reserved. This work is licensed under a Creative Commons Attribution Non-Commercial No Derivatives 3.0 Unported License. To view the terms of this license, visit creativecommons.org/licenses/by-nc-nd/3.0. Environment America Research & Policy Center is a 501(c)(3) organization. We are dedicated to protect- ing our air, water and open spaces. We investigate problems, craft solutions, educate the public and de- cision-makers, and help the public make their voices heard in local, state and national debates over the quality of our environment and our lives.