M Ineral Group S Adelite Group Orthorhombic Arsenates And

Total Page:16

File Type:pdf, Size:1020Kb

M Ineral Group S Adelite Group Orthorhombic Arsenates And Mineral Groups Adelite Group 2+ Orthorhombic arsenates and vanadates of general formula AB (XO4)(OH), A = Ca, Pb; B2+ = Co, Cu, Fe, Mg, Ni, Zn; X = As5+, V5+. Adelite CaMg(AsO4)(OH) Austinite CaZn(AsO4)(OH) Calciovolborthite CaCu(VO4)(OH) (needs study) 2+ CobaltaustiniteCa(Co,Cu )(AsO4)(OH) 2+ Conichalcite CaCu (AsO4)(OH) Duftite PbCu(AsO4)(OH) 2+ Gabrielsonite PbFe (AsO4)(OH) Nickelaustinite Ca(Ni,Zn)(AsO4)(OH) Tangeite CaCuVO4(OH) Aenigmatite Group 3+ 2+ 3+ 5+ Triclinic silicates with general formula A2B6X6O20, A = Ca, Na; B = Al, Cr , Fe , Fe , Mg, Sb , Ti; X = Al, B, Be, Si. 2+ Aenigmatite Na2Fe5 TiSi6O20 3+ Dorrite Ca2Mg2Fe4 Al4Si2O20 2+ 3+ H_gtuvaite (Ca,Na)2(Fe ,Fe ,Ti,Mg,Mn,Sn)6(Si,Be,Al)6O20 Krinovite Na2Mg4Cr2Si6O20 2+ 3+ Makarochkinite (Ca,Na)2(Fe ,Fe ,Ti,Mg)6(Si,Al,Be)6O20 2+ 3+ Rh_nite Ca2(Mg,Fe ,Fe ,Ti)6(Si,Al)6O20 Serendibite Ca2(Mg,Al)6(Si,Al,B)6O20 5+ 3+ Welshite Ca2Sb Mg4Fe Si4Be2O20 2+ 3+ Wilkinsonite Na2Fe4 Fe2 Si6O20 Alluaudite Group Monoclinic phosphates and arsenates of general formula NaACD2(XO4)3, A = Ca, Mg, Pb; C = Ca, Fe2+, Mn2+; D = Mn2+, Fe2+, Fe3+, Mg; X = P, As. 2+ 2+ 2+ 3+ Alluaudite NaCaFe (Mn ,Fe ,Fe ,Mg)2(PO4)3 2+ 2+ Arseniopleite NaCaMn (Mn ,Mg)2(AsO4)3 Caryinite Na(Ca,Pb)(Ca,Mn)(Mn,Mg)2(AsO4)3 2+ 2+ 2+ 3+ Ferro-alluaudite NaCaFe (Fe ,Mn ,Fe )2(PO4)3 2+ 2+ 3+ Hagendorfite NaCaMn (Fe ,Fe ,Mg)2(PO4)3 2+ 2+ 3+ Maghagendorfite NaMn Mg(Fe ,Fe )2(PO4)3 2+ 2+ 2+ 3+ Varulite (Na,Ca)Mn (Mn ,Fe ,Fe )2(PO4)3 Alunite Group 1+ Trigonal sulfates of general formula AB6(SO4)4(OH)12, A = Ag2 , Ca, (H3O)2, K2, Na2, (NH4)2, Tl1+, Pb; B = Al, Cu2+, Fe3+. Alunite K2Al6(SO4)4(OH)12 Ammonioalunite (NH4)2Al6(SO4)4(OH)12 3+ Ammoniojarosite (NH4)2Fe6 (SO4)4(OH)12 3+ ArgentojarositeAg2Fe6 (SO4)4(OH)12 2+ 3+ Beaverite Pb(Cu ,Fe ,Al)6(SO4)4(OH)12 3+ Dorallcharite (Tl,K)Fe3 (SO4)2(OH)6 Huangite CaAl6(SO4)4(OH)12 1+ 3+ Hydronium jarosite (H3O )2Fe6 (SO4)4(OH)12 3+ Jarosite K2Fe6 (SO4)4(OH)12 3+ Kintoreite PbFe3 (PO4)2(OH,H2O)6 Minamiite (Na,Ca,K)2Al6(SO4)4(OH)12 Natroalunite Na2Al6(SO4)4(OH)12 3+ Natrojarosite Na2Fe6 (SO4)4(OH)12 2+ Osarizawaite Pb2Cu2 Al4(SO4)4(OH)12 3+ Plumbojarosite PbFe6 (SO4)4(OH)12 Walthierite BaAl6(SO4)4(OH)12 Amblygonite Group 3+ Triclinic phosphates of general formula AB(PO4)X, A = Li, Na; B = Al, Fe ; X = (OH), F. Amblygonite (Li,Na)Al(PO4)(F,OH) Montebrasite LiAl(PO4)(OH,F) Natromontebrasite (Na,Li)Al(PO4)(OH,F) 3+ Tavorite LiFe (PO4)(OH) Amphibole Group A major revision of the classification and nomenclature of the Amphibole Group by Leake et al. (1997) has been published in several mineralogical journals. For example, it has appeared in the Canadian Mineralogist 35, 219–246 (1997), Mineralogical Magazine 61, 295–321 (1997), the European Journal of Mineralogy 9, 623–651 (1997), and the American Mineralogist 82, 1019–1037 (1997). Mandarino (1998) summarized the report in the Mineralogical Record 29, 169–174 (1998) as The Second List of Additions and Corrections to the Glossary of Mineral Species 7th Edition (1995). Readers interested in this complex group of minerals should refer to that article and to the original paper by Leake et al. (1997). Since the publication of the papers noted above, several new amphibole species have been described; these are included in this book. VI IV The standard amphibole formula is AB2 C5 T8O22X2. The components A, B, C, T, and X of the formula correspond to the following crystallographic sites: A one site per formula unit; B two M4 sites per formula unit; C a composite of five octahedral sites made up of 2 M1, 2 M2, and 1 M3 sites per formula unit; T eight tetrahedral sites in two sets of four per formula unit; X two sites per formula unit. The ions considered normally to occupy these sites are: (empty site) and K at A only Na at A or B Ca at B only L-type ions: Mg, Fe2+, Mn2+, Li, and rarer ions of similar size such as Zn, Ni, Co atC or B M-type ions: Al at C or T Fe3+, and, more rarely, Mn3+, Cr3+ at C only High-valency ions: Ti4+ at C or T Zr4+ at C only Si at T only Anions: OH, F, Cl, O at X The amphibole group is divided into four subgroups: magnesium-iron-manganese-lithium (i.e., Mg-Fe-Mn-Li), calcic, sodic-calcic, and sodic. The second column of the following species list indicates the subgroup to which the species belong; MFML = Mg-Fe-Mn-Li, C = calcic, SC = sodic-calcic, and S = sodic. Species names not in bold indicate compositions that may not have been found in nature yet. 2+ Actinolite C Ca2(Mg,Fe )5Si8O22(OH)2 Aluminobarroisite SC (CaNa)Mg3Al2Si7AlO22(OH)2 2+ Alumino-ferrobarroisite SC (CaNa)Fe3 Al2Si7AlO22(OH)2 2+ Alumino-ferrotschermakite C Ca2(Fe3 Al2)Si6Al2O22(OH)2 Alumino-magnesiotaramite SC Na(CaNa)Mg3Al2Si6Al2O22(OH)2 2+ Aluminotaramite SC Na(CaNa)Fe3 Al2Si6Al2O22(OH)2 Aluminotschermakite C Ca2(Mg3Al2)Si6Al2O22(OH)2 Anthophyllite MFML Mg7Si8O22(OH)2 2+ 3+ Arfvedsonite SNaNa2(Fe4 Fe )Si8O22(OH)2 3+ Barroisite SC (CaNa)Mg3AlFe Si7AlO22(OH)2 Cannilloite C CaCa2(Mg4Al)Si5Al3O22(OH)2 2+ Clinoferroholmquistite MFML (Li2Fe3 Al2)Si8O22(OH)2 Clinoholmquistite MFML (Li2Mg3Al2)Si8O22(OH)2 Cummingtonite MFML Mg7Si8O22(OH)2 Eckermannite SNaNa2(Mg4Al)Si8O22(OH)2 Edenite C NaCa2Mg5Si7AlO22(OH)2 3+ Ferribarroisite SC (CaNa)Mg3Fe2 Si7AlO22(OH)2 2+ 3+ Ferric-ferronyb_ite SNaNa2(Fe3 Fe2 )Si7AlO22(OH)2 2+ 3+ Ferri-clinoferroholmquistite MFML (Li2Fe3 Fe2 )Si8O22(OH)2 3+ Ferri-clinoholmquistite MFML (Li2Mg3Fe2 )Si8O22(OH)2 3+ Ferric-nyb_ite SNaNa2(Mg3Fe2 )Si7AlO22(OH)2 2+ 3+ Ferri-ferrobarroisite SC (CaNa)Fe3 Fe2 Si7AlO22(OH)2 2+ 3+ Ferri-ferrotschermakiteC Ca2(Fe3 Fe2 )Si6Al2O22(OH)2 3+ Ferri-magnesiotaramite SC Na(CaNa)Mg3Fe2 Si6Al2O22(OH)2 2+ 3+ Ferritaramite SC Na(CaNa)Fe3 Fe2 Si6Al2O22(OH)2 3+ Ferritschermakite C Ca2(Mg3Fe2 )Si6Al2O22(OH)2 2+ Ferro-actinolite C Ca2Fe5 Si8O22(OH)2 2+ Ferro-anthophyllite MFML Fe7 Si8O22(OH)2 2+ 3+ Ferrobarroisite SC (CaNa)Fe3 AlFe Si7AlO22(OH)2 2+ Ferro-eckermannite SNaNa2(Fe4 Al)Si8O22(OH)2 2+ Ferro-edenite C NaCa2Fe5 Si7AlO22(OH)2 2+ Ferrogedrite MFML Fe5 Al2Si6Al2O22(OH)2 2+ Ferroglaucophane SNa2(Fe3 Al2)Si8O22(OH)2 2+ Ferroholmquistite MFML (Li2Fe3 Al2)Si8O22(OH)2 2+ 3+ Ferrohornblende C Ca2[Fe4 (Al,Fe )]Si7AlO22(OH)2 2+ Ferrokaersutite C NaCa2(Fe4 Ti)Si6Al2O23(OH) 2+ 3+ Ferroleakeite SNaNa2(Fe2 Fe2 Li)Si8O22(OH)2 2+ Ferronyb_ite SNaNa2(Fe3 Al2)Si7AlO22(OH)2 2+ Ferropargasite C NaCa2(Fe4 Al)Si6Al2O22(OH)2 2+ Ferrorichterite SC Na(CaNa)Fe5 Si8O22(OH)2 2+ 3+ Ferrotschermakite C Ca2(Fe3 AlFe )Si6Al2O22(OH)2 2+ 3+ Ferrowinchite SC (CaNa)Fe4 (Al,Fe )Si8O22(OH)2 Fluorocannilloite C CaCa2(Mg4Al)Si5Al3O22F2 2+ 3+ Fluoro-ferroleakeite SNaNa2(Fe2 Fe2 Li)Si8O22F2 Fluororichterite SC Na(CaNa)Mg5Si8O22F2 Gedrite MFML Mg5Al2Si6Al2O22(OH)2 Glaucophane SNa2(Mg3Al2)Si8O22(OH)2 2+ Grunerite MFML Fe7 Si8O22(OH)2 2+ 3+ Hastingsite C NaCa2(Fe4 Fe )Si6Al2O22(OH)2 Holmquistite MFML (Li2Mg3Al2)Si8O22(OH)2 Kaersutite C NaCa2(Mg4Ti)Si6Al2O23(OH) 2+ 3+ Katophorite SC Na(CaNa)Fe4 (Al,Fe )Si7AlO22(OH)2 3+ Kornite S(Na,K)Na2(Mg2Mn2 Li)Si8O22(OH)2 2+ 3+ Kozulite SNaNa2Mn4 (Fe ,Al)Si8O22(OH)2 3+ Leakeite SNaNa2(Mg2Fe2 Li)Si8O22(OH)2 3+ Magnesio-arfvedsonite SNaNa2(Mg4Fe )Si8O22(OH)2 3+ Magnesiohastingsite C NaCa2(Mg4Fe )Si6Al2O22(OH)2 3+ Magnesiohornblende C Ca2[Mg4(Al,Fe )]Si7AlO22(OH)2 3+ Magnesiokatophorite SC Na(CaNa)Mg4(Al,Fe )Si7AlO22(OH)2 3+ Magnesioriebeckite SNa2(Mg3Fe2 )Si8O22(OH)2 3+ Magnesiosadanagaite C NaCa2[Mg3(Al,Fe )2]Si5Al3O22(OH)2 3+ Magnesiotaramite SC Na(CaNa)Mg3AlFe Si6Al2O22(OH)2 ManganocummingtoniteMFML Mn2Mg5Si8O22(OH)2 2+ Manganogrunerite MFML Mn2Fe5 Si8O22(OH)2 Nyb_ite SNaNa2(Mg3Al2)Si7AlO22(OH)2 Pargasite C NaCa2(Mg4Al)Si6Al2O22(OH)2 2+ Permanganogrunerite MFML Mn4Fe3 Si8O22(OH)2 Potassic-fluororichterite SC (K,Na)(CaNa)Mg5Si8O22F2 Potassic-magnesiosadanagaite 3+ C (K,Na)Ca2[Mg3(Al,Fe )2]- Si5Al3O22(OH)2 Potassicpargasite C (K,Na)Ca2(Mg,Fe,Al)5- (Si,Al)8O22(OH,F)2 2+ 3+ Potassicsadanagaite C (K,Na)Ca2[Fe3 (Al,Fe )2]- Si5Al3O22(OH)2 2+ 2+ 2+ Protoferro-anthophyllite MFML (Fe ,Mn )2(Fe ,Mg)5(Si4O11)2(OH)2 Protomangano-ferro-anthophyllite 2+ 2+ 2+ MFML (Mn ,Fe )2(Fe ,Mg)5(Si4O11)2(OH)2 Richterite SC Na(CaNa)Mg5Si8O22(OH)2 2+ 3+ Riebeckite SNa2(Fe3 Fe2 )Si8O22(OH)2 2+ 3+ Sadanagaite C NaCa2[Fe3 (Al,Fe )2]Si5Al3O22(OH)2 Sodicanthophyllite MFML NaMg7Si8O22(OH)2 Sodic-ferri-clinoferroholmquistite 2+ 3+ MFML Li2(Fe ,Mg)3Fe2 Si8O22(OH)2 2+ Sodic-ferro-anthophyllite MFML NaFe7 Si8O22(OH)2 2+ Sodic-ferrogedrite MFML NaFe6 AlSi6Al2O22(OH)2 Sodicgedrite MFML NaMg6AlSi6Al2O22(OH)2 2+ 3+ Taramite SC Na(CaNa)Fe3 AlFe Si6Al2O22(OH)2 Tremolite C Ca2Mg5Si8O22(OH)2 3+ Tschermakite C Ca2(Mg3AlFe )Si6Al2O22(OH)2 2+ 3+ Ungarettiite SNaNa2(Mn2 Mn3 )Si8O22O2 3+ Winchite SC (CaNa)Mg4(Al,Fe )Si8O22(OH)2 Joesmithite is a related mineral. Apatite Group Hexagonal, or monoclinic, pseudohexagonal arsenates, phosphates, and vanadates of general 5+ 5+ 4+ 5+ formula A5(XO4)3(F,CL,CH); A = Ba, Ca, Ce, K, Na, Pb, Sr, Y; X = As , P , Si , V ; (CO3) may partially replace (PO4).
Recommended publications
  • Impact of High Temperatures on Aluminoceladonite Studied by Mössbauer, Raman, X-Ray Diffraction and X-Ray Photoelectron Spectroscopy
    Title: Impact of high temperatures on aluminoceladonite studied by Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopy Author: Mariola Kądziołka-Gaweł, Maria Czaja, Mateusz Dulski, Tomasz Krzykawski, Magdalena Szubka Citation style: Kądziołka-Gaweł Mariola, Czaja Maria, Dulski Mateusz, Krzykawski Tomasz, Szubka Magdalena. (2021). Impact of high temperatures on aluminoceladonite studied by Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopy. “Mineralogy and Petrology” (Vol. 115, iss. 0, 2021, s. 1- 14), DOI: 10.1007/s00710-021-00753-z Mineralogy and Petrology (2021) 115:431–444 https://doi.org/10.1007/s00710-021-00753-z ORIGINAL PAPER Impact of high temperatures on aluminoceladonite studied by Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopy Mariola Kądziołka-Gaweł1 & Maria Czaja2 & Mateusz Dulski3,4 & Tomasz Krzykawski2 & Magdalena Szubka1 Received: 9 March 2020 /Accepted: 28 April 2021 / Published online: 18 May 2021 # The Author(s) 2021 Abstract Mössbauer, Raman, X-ray diffraction and X-ray photoelectron spectroscopies were used to examine the effects of temperature on the structure of two aluminoceladonite samples. The process of oxidation of Fe2+ to Fe3+ ions started at about 350 °C for the sample richer in Al and at 300 °C for the sample somewhat lower Al-content. Mössbauer results show that this process may be associated with dehydroxylation or even initiate it. The first stage of dehydroxylation takes place at a temperature > 350 °C when the adjacent OH groups are replaced with a single residual oxygen atom. Up to ~500 °C, Fe ions do not migrate from cis- octahedra to trans-octahedra sites, but the coordination number of polyhedra changes from six to five.
    [Show full text]
  • Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
    Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W.
    [Show full text]
  • The Atomic Arrangement of Ojuelaite, Znfe~ + (AS04)2(OH)204H20
    SHORT COMMUNICATIONS 519 MINERALOGICAL MAGAZINE, JUNE 1996, VOL. 60, PP 519-521 The atomic arrangement of ojuelaite, ZnFe~ + (AS04)2(OH)204H20 John M. Hughes Department of Geology, Erich S. Bloodaxe Miami University, Kyle D. Kobel Oxford, OR 45056, USA John W. Drexler Department of Geological Sciences, University of Colorado, Boulder, CO 80309, USA OJUELAITEwas described from its occurrence at the site in whitmoreite (Moore et at., 1974). Refinement Ojuela mine in Mapimi, Mexico by Cesbron et al. of electron occupancy of the site yielded 28.0 (1981). Those authors suggested that the phase was electrons, as opposed to 29.0 by electron probe, isostructural with whitmoreite (Moore et at., 1974), a supporting the lack of saturation of the site by Zn. It phase of interest because of the unique arrangement of is not known if the iron in the site is Fe2+ or if it is Fe octaheda in its octahedral sheet. Cesbron et at. Fe3+ that is charge-balanced by a mechanism such as (OH) substitution. (1981) also suggested that ojuelaite was isostructural a concomitant 0 =<== with arthurite, CuFd+(As04h(OHh.4H20 (Keller and Table 2 lists atomic coordinates, equivalent Hess, 1978). The common fibrous habit of ojuelaite, isotropic thermal parameters, and bond valence however, has precluded structure determination. sums before hydrogen bonding is calculated; We obtained a specimen of ojuelaite from the type Table 3 lists selected bond lengths. Structure locality that provided a single crystal suitable for factors and anisotropic thermal parameters may be structure determination. The structure study obtained from the editor. confirmed that ojuelaite is isostructural with whitmoreite and arthurite within the large constraints imposed by the requirements of the different TABLE 1.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERALOGIST, VOL. 52, SEPTEMSER_OCTOBER, 1967 NEW MINERAL NAMES Mrcn,rBr F-r-Brscnnn Lonsdaleite Cr.u'lonn FnoNoer. lNn Uxsule B. MenvrN (1967) Lonsdaleite, a hexagonai polymorph oi diamond. N atwe 214, 587-589. The residue (about 200 e) from the solution of 5 kg of the Canyon Diablo meteorite was found to contain about a dozen black cubes and cubo-octahedrons up to about 0.7 mm in size. They were found to consist of a transparent substance coated by graphite. X-ray data showed the material to be hexagonal, rvith o 2.51, c 4.12, c/a I.641. The strongest X-ray lines are 2.18 (4)(1010), 2.061 (10)(0002), r.257 (6)(1120), and 1.075 (3)(rrr2). Electron probe analysis showed only C. It is accordingly the hexagonal (2H) dimorph of diamond. Fragments under the microscope were pale brownish-yellow, faintly birefringent, a slightly higher than 2.404. The hexagonal dimorph is named lonsdaleite for Prof. Kathleen Lonsdale, distin- guished British crystallographer. It has been synthesized by the General Electric co. and by the DuPont Co. and has also been reported in the Canyon Diablo and Goalpara me- teorites by R. E. Hanneman, H. M. Strong, and F. P. Bundy of General Electric Co. lSci.enc e, 155, 995-997 (1967) l. The name was approved before publication by the Commission on New Minerals and Mineral Names, IMA. Roseite J. OrrnueNn nNl S. S. Aucusrrtnrs (1967) Geochemistry and origin of "platinum- nuggets" in lateritic covers from ultrabasic rocks and birbirites otW.Ethiopia.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Personal Body Ornamentation on the Southern Iberian Meseta: an Archaeomineralogical Study
    Journal of Archaeological Science: Reports 5 (2016) 156–167 Contents lists available at ScienceDirect Journal of Archaeological Science: Reports journal homepage: www.elsevier.com/locate/jasrep Personal body ornamentation on the Southern Iberian Meseta: An archaeomineralogical study Carlos P. Odriozola a,⁎, Luis Benítez de Lugo Enrich b,c, Rodrigo Villalobos García c, José M. Martínez-Blanes d, Miguel A. Avilés e, Norberto Palomares Zumajo f, María Benito Sánchez g, Carlos Barrio Aldea h, Domingo C. Salazar-García i,j a Dpto. de Prehistoria y Arqueología, Universidad de Sevilla, Spain b Dpto. de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Spain c Dpto. de Prehistoria y Arqueología, Centro asociado UNED-Ciudad Real, Universidad Nacional de Educación a Distancia, Spain d Dpto. de Prehistoria, Arqueología, Antropología Social y Ciencias y Técnicas Historiográficas, Universidad de Valladolid, Spain e Instituto de Ciencia de Materiales de Sevilla, Centro mixto Universidad de Sevilla—CSIC, Spain f Anthropos, s.l., Spain g Laboratorio de Antropología Forense, Universidad Complutense de Madrid, Spain h Archaeologist i Department of Archaeology, University of Capetown, South Africa j Departament de Prehistòria i Arqueologia, Universitat de València, Spain article info abstract Article history: Beads and pendants from the Castillejo del Bonete (Terrinches, Ciudad Real) and Cerro Ortega (Villanueva de la Received 22 June 2015 Fuente, Ciudad Real) burials were analysed using XRD, micro-Raman and XRF in order to contribute to the cur- Received in revised form 30 October 2015 rent distribution map of green bead body ornament pieces on the Iberian Peninsula which, so far, remain Accepted 14 November 2015 undetailed for many regions.
    [Show full text]
  • Factors Responsible for Crystal Chemical Variations in The
    American Mineralogist, Volume 95, pages 348–361, 2010 Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite VICTOR A. DRITS ,1 BELL A B. ZV I A GIN A ,1 DOUGL A S K. MCCA RTY,2,* A N D ALFRE D L. SA LYN 1 1Geological Institute of the Russian Academy of Science, Pyzhevsky per. 7, 119017 Moscow, Russia 2Chevron ETC, 3901 Briarpark, Houston, Texas 77063, U.S.A. AB STR A CT Several finely dispersed low-temperature dioctahedral micas and micaceous minerals that form solid solutions from (Mg,Fe)-free illite to aluminoceladonite via Mg-rich illite, and from Fe3+-rich glauconite to celadonite have been studied by X-ray diffraction and chemical analysis. The samples have 1M and 1Md structures. The transitions from illite to aluminoceladonite and from glauconite to celadonite are accompanied by a consistent decrease in the mica structural-unit thickness (2:1 layer + interlayer) or csinβ. In the first sample series csinβ decreases from 10.024 to 9.898 Å, and in the second from 10.002 to 9.961 Å. To reveal the basic factors responsible for these regularities, struc- tural modeling was carried out to deduce atomic coordinates for 1M dioctahedral mica based on the unit-cell parameters and cation composition. For each sample series, the relationships among csinβ, maximum and mean thicknesses of octahedral and tetrahedral sheets and of the 2:1 layer, interlayer distance, and variations of the tetrahedral rotation angle, α, and the degree of basal surface corruga- tion, ∆Z, have been analyzed in detail.
    [Show full text]
  • Thirty-Seventh List of New Mineral Names. Part 1" A-L
    Thirty-seventh list of new mineral names. Part 1" A-L A. M. CLARK Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK AND V. D. C. DALTRYt Department of Geology and Mineralogy, University of Natal, Private Bag XO1, Scottsville, Pietermaritzburg 3209, South Africa THE present list is divided into two sections; the pegmatites at Mount Alluaiv, Lovozero section M-Z will follow in the next issue. Those Complex, Kola Peninsula, Russia. names representing valid species, accredited by the Na19(Ca,Mn)6(Ti,Nb)3Si26074C1.H20. Trigonal, IMA Commission on New Minerals and Mineral space group R3m, a 14.046, c 60.60 A, Z = 6. Names, are shown in bold type. Dmeas' 2.76, Dc~ac. 2.78 g/cm3, co 1.618, ~ 1.626. Named for the locality. Abenakiite-(Ce). A.M. McDonald, G.Y. Chat and Altisite. A.P. Khomyakov, G.N. Nechelyustov, G. J.D. Grice. 1994. Can. Min. 32, 843. Poudrette Ferraris and G. Ivalgi, 1994. Zap. Vses. Min. Quarry, Mont Saint-Hilaire, Quebec, Canada. Obschch., 123, 82 [Russian]. Frpm peralkaline Na26REE(SiO3)6(P04)6(C03)6(S02)O. Trigonal, pegmatites at Oleny Stream, SE Khibina alkaline a 16.018, c 19.761 A, Z = 3. Named after the massif, Kola Peninsula, Russia. Monoclinic, a Abenaki Indian tribe. 10.37, b 16.32, c 9.16 ,~, l~ 105.6 ~ Z= 2. Named Abswurmbachite. T. Reinecke, E. Tillmanns and for the chemical elements A1, Ti and Si. H.-J. Bernhardt, 1991. Neues Jahrb. Min. Abh., Ankangite. M. Xiong, Z.-S.
    [Show full text]
  • Cation Ordering and Pseudosymmetry in Layer Silicates'
    I A merican M ineralogist, Volume60. pages175-187, 1975 Cation Ordering and Pseudosymmetryin Layer Silicates' S. W. BerI-nv Departmentof Geologyand Geophysics,Uniuersity of Wisconsin-Madison Madison, Wisconsin5 3706 Abstract The particular sequenceof sheetsand layers present in the structure of a layer silicate createsan ideal symmetry that is usually basedon the assumptionsof trioctahedralcompositions, no significantdistor- tion, and no cation ordering.Ordering oftetrahedral cations,asjudged by mean l-O bond lengths,has been found within the constraints of the ideal spacegroup for specimensof muscovite-3I, phengile-2M2, la-4 Cr-chlorite, and vermiculite of the 2-layer s type. Many ideal spacegroups do not allow ordering of tetrahedralcations because all tetrahedramust be equivalentby symmetry.This includesthe common lM micasand chlorites.Ordering oftetrahedral cations within subgroupsymmetries has not beensought very often, but has been reported for anandite-2Or, llb-2prochlorite, and Ia-2 donbassite. Ordering ofoctahedral cations within the ideal spacegroups is more common and has been found for muscovite-37, lepidolite-2M", clintonite-lM, fluoropolylithionite-lM,la-4 Cr-chlorite, lb-odd ripidolite, and vermiculite. Ordering in subgroup symmetries has been reported l-oranandite-2or, IIb-2 prochlorite, and llb-4 corundophilite. Ordering in local out-of-step domains has been documented by study of diffuse non-Bragg scattering for the octahedral catlons in polylithionite according to a two-dimensional pattern and for the interlayer cations in vermiculite over a three-cellsuperlattice. All dioctahedral layer silicates have ordered vacant octahedral sites, and the locations of the vacancies change the symmetry from that of the ideal spacegroup in kaolinite, dickite, nacrite, and la-2 donbassite Four new structural determinations are reported for margarite-2M,, amesile-2Hr,cronstedtite-2H", and a two-layercookeite.
    [Show full text]
  • Phyllosilicates in the Sediment-Forming Processes: Weathering, Erosion, Transportation, and Deposition
    Acta Geodyn. Geomater., Vol. 6, No. 1 (153), 13–43, 2009 PHYLLOSILICATES IN THE SEDIMENT-FORMING PROCESSES: WEATHERING, EROSION, TRANSPORTATION, AND DEPOSITION Jiří KONTA Faculty of Sciences, Charles University, Albertov 6, 128 43 Prague 2 Home address: Korunní 127, 130 00 Prague 3, Czech Republic *Corresponding author‘s e-mail: [email protected] (Received October 2008, accepted January 2009) ABSTRACT Phyllosilicates are classified into the following groups: 1 - Neutral 1:1 structures: the kaolinite and serpentine group. 2 - Neutral 2:1 structures: the pyrophyllite and talc group. 3 - High-charge 2:1 structures, non-expansible in polar liquids: illite and the dioctahedral and trioctahedral micas, also brittle micas. 4 - Low- to medium-charge 2:1 structures, expansible phyllosilicates in polar liquids: smectites and vermiculites. 5 - Neutral 2:1:1 structures: chlorites. 6 - Neutral to weak-charge ribbon structures, so-called pseudophyllosilicates or hormites: palygorskite and sepiolite (fibrous crystalline clay minerals). 7 - Amorphous clay minerals. Order-disorder states, polymorphism, polytypism, and interstratifications of phyllosilicates are influenced by several factors: 1) a chemical micromilieu acting during the crystallization in any environment, including the space of clay pseudomorphs after original rock-forming silicates or volcanic glasses; 2) the accepted thermal energy; 3) the permeability. The composition and properties of parent rocks and minerals in the weathering crusts, the elevation, and topography of source areas and climatic conditions control the intensity of weathering, erosion, and the resulting assemblage of phyllosilicates to be transported after erosion. The enormously high accumulation of phyllosilicates in the sedimentary lithosphere is primarily conditioned by their high up to extremely high chemical stability in water-rich environments (expressed by index of corrosion, IKO).
    [Show full text]