View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of May 1998 Form, Function, and Evolution in Skulls and Teeth of Bats Patricia W. Freeman University of Nebraska-Lincoln,
[email protected] Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons Freeman, Patricia W., "Form, Function, and Evolution in Skulls and Teeth of Bats" (1998). Papers in Natural Resources. 9. https://digitalcommons.unl.edu/natrespapers/9 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 9 Form, Function, and Evolution in Skulls and Teeth of Bats PATRICIA W FREEMAN Bats provide a model system for tracking change from the stylar shelves and elongated skulls with larger brain vol- primitive mammalian tooth pattern to patterns indicating umes and external ears than their insectivorous relatives. As the more-derived food habits of carnivory, nectarivory, in terrestrial mammals, however, there is no clear distinc- frugivory, and sanguinivory. Whereas microchiropteran tion between insectivorous and carnivorous species (Savage bats show all these transitions, megachiropterans illustrate 1977; Freeman 1984). Microchiropteran nectarivores are an alternative pattern concerned only with frugivory and also on a continuum with insectivores but are characteris- nectarivory. In rnicrochiropterans, it is likely that carnivory tically long-snouted with large canines and diminutive post- nectarivory, frugivory, and sanguinivory are all derived canine teeth (Freeman 1995).