March 23, 1954 C. E. LOMAX 2,673,243 TELEPHONE COIN COLLECTION SYSTEM Filed July 29, 1950 5 Sheets-Sheet Li

Total Page:16

File Type:pdf, Size:1020Kb

March 23, 1954 C. E. LOMAX 2,673,243 TELEPHONE COIN COLLECTION SYSTEM Filed July 29, 1950 5 Sheets-Sheet Li March 23, 1954 C. E. LOMAX 2,673,243 TELEPHONE COIN COLLECTION SYSTEM Filed July 29, 1950 5 Sheets-Sheet li CD - 25 sSC O ...) <5.3. INVENTOR. CLARENCE E. LOMAX ATTORNEY March 23, 1954 C. E. LOMAX 2,673,243 TELEPHONE COIN COLLECTION SYSTEM Filed July 29, 1950 5. Sheets-Sheet 2 INVENTOR. CLARENCE E. LOMAX ATTORNEY March 23, 1954 C. E. LOMAX 2,673,243 TELEPHONE COIN COLLECTION SYSTEM Filed July 29, 1950 5 Sheets-Sheet 3 INVENTOR CLARENCE E. LOMAX ATTORNEY March 23, 1954 C. E. LOMAX 2,673,243 TELEPHONE COIN COLLECTION SYSTEM Filed July 29, 1950 5. Sheets-Sheet 4 ON N.- N.N N.NO VN. N.O N.(O. N. ON OOr OO n MO MO MO ) R 35 r) 8N 9. 8g 9 CN v noO. 9 | O ol, 3 - 3...? 5 ? men on a- - mo am or a - - - - -- a - - - O N) : -- S. - a w ---W. - -- -u- --an - s i S.P-- - OX a iCs i.s ---- INVENTOR. CLARENCE E. LOMAX 242.2% ATTORNEY March 23, 1954 C. E. OMAX 2,673,243 TELEPHONE COIN COLLECTION SYSTEM INVENTOR. CLARENCE E. LOMAX ATTORNEY Patented Mar. 23, 1954 2,673,243 UNITED STATES PATENT OFFICE 2,673,243 TELEPHONE COIN COLLECTION SYSTEM Clarence E. Lomax, Chicago, Ill., assignor to Ill.,Automatic a corporation Electric of Laboratories,Delaware Inc., Chicago, Application July 29, 1950, Serial No. 16,756 6 Claims, (C1, 179-6.3) This invention relates in general to automatic 2 telephone systems and, more particularly, to hopper are also modified so that dimes and quar means for controlling the coin mechanism where ters will be guided to one channel of the hopper in it is required that coins of a certain denomina While nickels only will be directed to the other. tion only can initiate a call. The coin trigger that controls the operation of the The main object of the present invention is the 5 coin Springs protrudes into one of these chan provision of a new and novel paystation circuit nels-the one passing dimes and quarters. There arrangement wherein a party operating the dial fore, only dimes or quarters can trip the coin subsequent to the depositing of a non-initiating Springs and initiate a call. It should be under denomination coin will cause that particular coin stood that any mechanical arrangement that pro to be refunded. O duces this same result could be used in combina It is another object of the invention to provide, tion with this circuit arrangement. The inventor in such an automatic telephone System, improved does not wish to be limited merely thereto. and simplified apparatus wherein refund poten The line finders indicated in Fig. 1 and Fig. 3 tial is automatically transmitted responsive to the may be of the well known Strowger type as shown answering of the operator only when the call orig in U. S. patent to Saunders No. 1,849,694, granted inates from a payStation. March 15, 1932. The line circuits indicated may It is another object of the invention to provide also be of the type as shown in the above-men improved and exceedingly simple paystation cir tioned patent. The neon tube shown in Fig. 1 cuit apparatus wherein a more positive indication : has the Well-known characteristic of being non of the success or failure of manual operation of conductive until a predetermined voltage is im the coin magnets is afforded the operator. pressed across the terminals thereof. Following These and other objects are accomplished a,c- ionization of the gas contained therein the volt cording to the invention, by the arrangement and age required to maintain the tube conductive is combination of elements set forth in the following substantially less than that required for initiating description, defined in the appended claims and 2. 5 ionization. Also, the resistance of the device is illustratively exemplified in the accompanying Substantially lessened after the device is rendered drawings, in which: conductive. This neon tube is so arranged in the Fig. 1 shows an automatic substation of the circuit that it will form a path for refunding volt payStation type, an associated line circuit and a age and still bar the line from ground through the succeeding line finder. 30 coin magnets when the coin springs are not Fig. 2 shows a portion of the paystation re tripped. peater associated with the line finder. It should be understood that any suitable dis Fig. 3 shows the remainder of the paystation charge device could be used in lieu of a neon tube. repeater circuit associated with its succeeding se- : The inventor does not wish to be limited merely lector. A regular subscriber and a switch train 3 5 thereto. is illustrated in the upper right section. The selectors indicated in Fig. 3 may be of the Fig. 4. ShoWS a portion of the combined line and Well known Strowger type similar to the selector shown in U. S. Patent No. 1,956,374, granted CLRrecording trunk). trunk circuit (hereinafter referred to as April 24, 1934. - Fig. 5 shows the remainder of the CLR, trunk In order to explain the operation of the cir and the operator's cord and coin control circuits. cuits, it will first be assumed that a party wishes Figs. 1-5 are assembled from left to right in to extend a call from the automatic payStation A Order. to a subscriber in a distant exchange, not shown, In the preferred form of this invention the air and the party attempts to do so by depositing a rangement is such that a dime or a quarter must nickel in the coin collecting mechanism at the be deposited before a call may be initiated. The paystation. The nickel would descend through coin collect-refund mechanism shown in Fig. 1 the modified coin race emerging and entering the may be of the well known type as illustrated in hopper at the top of channel 6. The coin would U. S. patent to George A. Long, No. 1,886,409, then proceed unobstructed to arresting device ), granted November 8, 1932, with a slight modifica 50 whereupon it is retained. It will be seen from the tion of the hopper. The hopper is enlarged and diagram of the coin hopper mechanism in Fig. 1 so constructed that two distinct and separate that coins traversing channel S will completely channels are provided to pass the coins to the circumvent coin trigger A. Thus, the depositing arresting device. The coin 'races leading to the of a nickel will cause no action whatsoever. The resultis the same as if no coin had been deposited. 2,673,243 4. 3 back and closing contact 213 operates hold relay It will now be assumed that following the 25, traced over the following path: ground, con depositing of said nickel the receiver is removed. tact 68b, conductor 9, contact 23, contact A loop circuit is formed through paystation A, 233, through hold relay 250 to battery. Release traced over the following path: line -L, diai 5 relay 239, being of the slow-to-release type Will pulsing contact , hook-switch contact 8, induc retain contact 233 closed during the time its tion coil Winding , talking transmitter 2, coil energizing circuit is momentarily opened at Con tone transmitter 3 and resistor 4 in parallel, tact 22 due to pulsing. Hold relay 25, by clos to line --L. The line relay in the indicated line ing contact 25 places resistor 267 across coin circuit will energize over this loop circuit in denser 266, reason therefor hereinafter explained. Well-known manner and a line finder will subse ..) Hold relay 25C also, by closing contact 252, causes quently initiate a search for calling payStation relay 30 to operate, traced over the following line A, also in well known manner. The line path: ground, contact 252, contact 209, conductor findel' being of the pre-seizing type, will close a . 83, contact 57, through relay 3 to battery. loop within itself to the associated succeeding Relay 39, once operated, places ground on con repeater before the calling line is actually found. tacts 3 and 32 to energize relays and (, Once it is found the loop, of course, extends back respectively. Relay 40, in closing contacts iá2 to the payStation. Line relay. 20 will then ener and 44 prepares a path for the refunding po gize, traced over the following path: ground, im tential. Other functions of relay f () will subse pedance resistor 26, lower winding of differen quently be described. Relay if, by closing con tial relay 22, repeating coil winding 262, con 20 tact 4 completes the path and applies refund ductor f3, contact 64, contact 43, line. --L, ing potential back to the substation line, traced loop circuit hereinbefore explained, line-I, con over the following path: negative 110 volt re tact is, contact 6 , conductor f7, repeating funding potential, lamp Ll, contacts 9, 4, 42, coil Winding 23, upper winding of differential conductor -L, line finder wiper -, line finder relay 228, through line relay 20 to battery. As bank contact - to substation line -L. At this is well known in the art, differential relay 22 point, namely, during pulsing, the remaining cir Will not operate when its two windings are ener cuit, from line-L, over dial off-normal contact gized simultaneously. Line relay 2f ), in closing 9, neon tube , through coin magnets 2 to ground contact 2 2, completes a path to operate re will be open at dial off-normal contact 3. Re lease relay 23 (, traced over the following patin: fund voltage, however, will be applied after as ground, contact 68b, conductor 79, contact, 2.2, Well as during the pulsing period as will be Sub through release relay 230 to battery.
Recommended publications
  • Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-Voltage Inverter Paper
    電気学会論文誌●(●●●●●●●部門誌) IEEJ Transactions on ●●●●●●●●●●●●●●● Vol.●● No.● pp.●-● DOI: ●.●●/ieejeiss.●●.● Paper Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-voltage Inverter * * * Keisuke Kusaka , Student member, Koji Orikawa, Member , Jun-ichi Itoh, Member a) ** ** ** Isamu Hasegawa , Non-member, Kazunori Morita , Member, Takeshi Kondo , Non-member (Manuscript received Jan. 00, 20XX, revised May 00, 20XX) In this paper, a gate driver supply, which supplies power to multiple gate drivers, is demonstrated. Robust isolation is required in the gate drive supplies of a medium-voltage inverter in order to drive high-voltage switching devices such as insulated-gate bipolar transistors. The proposed isolation system achieves isolation with transmission coils mounted on printed circuit boards. Furthermore, the isolation system transmits power from one transmitting board to six receiving boards. In the conventional system, the number of receivers is limited to one. In contrast, multiple receivers are acceptable in the proposed system. These characteristics help reduce the of the isolation system for the gate driver supplies. This paper presents the fundamental characteristics of the isolation system. The equivalent circuit of the proposed system can be derived by applying the equivalent circuit of a wireless power transfer system with a repeater coil. In addtion, a design method for the resonance capacitors is mathematically introduced using the equivalent circuit. It is verified that an isolation system with multiple receivers can be designed using the same resonance conditions as an isolation system with a single receiver. Moreover, the isolation system is experimentally demonstrated. It is confirmed that the isolation system transmits power with a maximum efficiency of 46.9% at an output power of 16.6 W beyond an air gap of 50 mm with only printed circuit boards.
    [Show full text]
  • Field Wire Techniques
    MHI DEPARTMENT OF THE ARMY FIELD MANUAL DEPATMENOFTH RMA TENAY1 DEPARTMENT OF THE ARMY * MAY 1956 *FM 24-20 FIELD MANUALl DEPARTMENT OF THE ARNMY No. 24-20 | WASHIGTON 25, D. C., 17 May 1956 FIELD-WIRE TECHNIQUES Paragraph Page CHAPTER 1. INTRODUCTION -------- 1-4 3 2. WIRE WD-1/TT Section I. Introduction -------------- 5, 6 5 II. Splicing ------------------ 7-11 6 III. Field-wire ties ------------- 12-22 23 CHAPTER 3. FIELD CABLES --------- 23-26 39 4. WIRE-LAYING AND WIRE-RECOVERY EQUIPMENTS --------- 27-35 52 5. POLE AND TREE CLIMBING Section I. Climbing equipment ------- 36-41 67 II. Pole climbing ------------- 42-48 77 III. Tree climbing ----------- 49, 50 88 CHAPTER 6. FIELD-WIRE LINE CON- STRUCTION Section I. Planning ----------------- 51-57 90 II. Orders and records --------- 58-62 96 III. Field-wire construction tech- niques ------------ 63-72 102 IV. Construction under unusual conditions -------------- 73-77 118 CHAPTER 7. MAINTENANCE OF F I E L D - W I R E SYSTEMS ------------ 78-84 122 8. CHARACTERISTICS OF COMMUNICATION EQUIPMENT Section I. Introduction ------------- 85, 86 132 II. Field telephones ---------- 87-92 133 *This manual supersedes FM 24-20, 4 October 1948. 380833°--56-1 1 Paragraph Page CHAPTER 8. CHARACTERISTICS OF COMMUNICATION EQUIPMENT-Con. Section III. Manual telephone switch- boards ------------- 93-96 140 IV. Field teletypewriters ------ 97-99 147 V. Telephone repeaters ----- 100-103 151 VI. Telegraph-Telephone Ter- minal AN/TCC-14 ------ 104-108 156 VII. Terminals ---------------- 109-111 162 VIII. Repeating coils ----------- 112-114 165 IX. Test equipment ----------- 115-119 174 CHAPTER 9. TELEPHONE SWITCH- BOARD OPERATION___ 120-124 183 APPENDIX I.
    [Show full text]
  • IBM Confidential Field Engineering Education Student Self-Study Course
    Field Engineering Education Student Self-Study Course IBM Confidential Field Engineering Education Student Self-Study Course IBM CDnfidential This document contains information of a proprietary nature. ALL INFORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFI­ DENCE. None of this information shall be divulged to persons other than: IBM employees authorized by the nature of their duties to receive such information or individuals or organizations authorized by the Field Engineering Division in accordance with existing policy regarding release of company information. Common Carrier Facilities for Teleprocessing PREFACE This course is provided to acquaint Customer Engi­ neers with some of the important concepts of Com­ mon Carrier equipment and facilities as used in Teleprocessing environment. This course will also provide the Customer Engineer with a permanent reference for these facilities. Address comments concerning the contents of this publication to: IBM Corporation, Field Engineering Education, Dept. 911, Poughkeepsie, N. Y., 12602 Printed March 1966 IBM CONFIDENTIAL CONTENTS SECTION 1. TELEGRAPH SESSION 3, LONG DISTANCE SYSTEMS • 39 Review Questions 40 SESSION 1, TELEGRAPH SYSTEMS 5 Telegraph Principles 6 SESSION 4, CHANNEL FACILITIES. 41 Transmission Methods • 6 Channels Necessary • 41 Functional Units 6 Grades of Channels • 41 Polar Relays 6 Review Questions 43 Junction Boxes 6 Line Arrestor (Heat) Coils 9 SESSION 5, CIRCUIT CHARACTERISTICS • 45 Repeaters 9 Review Questions 47 Representative Type Equipment 11 Basic Telegraph Circuit
    [Show full text]
  • From: Limitation Changes To: From: Authority This Page Is Unclassified
    UNCLASSIFIED AD NUMBER ADA800127 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to DoD only; Administrative/Operational Use; 31 JAN 1942. Other requests shall be referred to Office of Scientific Research and Development, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only. AUTHORITY SOD memo dtd 2 Aug 1960; SOD memo dtd 2 Aug 1960 THIS PAGE IS UNCLASSIFIED '."Stv,, ., t ,, ., - •>• .,,ii-/...y1,i^\t. , -:'.'' >. Itil'.'fV, V, •fJ'W; , \'- ' , ..".l h „./:•' 0,1 >'.'• ,, ,1 ! l " •»> .•t "',' t'JVi, >y,.i».\}, \ <..'•, •;* ü' l ,: ' . i <!' <" '1 • '1' Vu ''L'T v\ " PIED •• .,"• '>V!;. 'I'V.l/.Vr»;»-«!", •// ? *, , ft v11 V U' V!Y ^ sEiMCES TECHNICAL INFORMATION ÄßENff ••'::-;.«'^ U 31 ON II, Ä'V?' ''" -»-' /./{ •* .*'-i<»vVw.-'.-j.' .. ;*-: t CLASSIFICATION CHANOED J —4-- .= "P0 -UN^LÄSSlEijEL'Ö •"' r ^ : 1^ FR0jyi CON'FIDE:Nf;tAL .". - I 1 SBC. s6f EOT^ -ÜP&Gt* £'.ACTGU^eä f I r: : J »n5 vi'^'-V.".'"-/^!."^' '"^".'K'A'-V^W^'T •iiß^.-iJ^fig^s^Sä! Reproduced by o WgZ&m c EH Tfl fl L flIB DOCUmtHTS OFFICE I vS di ID © | •— — ! — *—!— U\M f -VJ^=—"\ /V U WRIGHT-PATTERSON AIR FORCE BASE- DAYTON.OHIO "V r- > IS ABSOLVED ROM ANY LITIGATION WHICH ENSUE FROM ANY SSFRSNGÜ AENT ON DOMESTIC OR PATENT RIGHTS MAY BE INVOLVED. tiXiJMSMUSwnt' 's&'zttKx^hzj&syazjs*, -.V LOW CONTRAST COPY 1-1 RIGINAL DOCUMENTS AY BE OBTAINED O ii LOAN ROM •u-i :S If ^ •m L. 63157 Speech Privacy Decoding - Final Report, January 31, W42- Parts X - H (None) Heising, B.
    [Show full text]
  • Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-Voltage Inverter
    IEEJ Journal of Industry Applications Vol.5 No.3 pp.206–214 DOI: 10.1541/ieejjia.5.206 Paper Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-voltage Inverter ∗ ∗ Keisuke Kusaka Student Member, Koji Orikawa Member ∗a) ∗∗ Jun-ichi Itoh Member, Isamu Hasegawa Non-member ∗∗ ∗∗ Kazunori Morita Member, Takeshi Kondo Non-member (Manuscript received April 30, 2015, revised Sep. 12, 2015) In this paper, a gate driver supply, which supplies power to multiple gate drivers, is demonstrated. Robust isolation is required in the gate drive supplies of a medium-voltage inverter in order to drive high-voltage switching devices such as insulated-gate bipolar transistors. The proposed isolation system achieves isolation with transmission coils mounted on printed circuit boards. Furthermore, the isolation system transmits power from one transmitting board to six receiving boards. In the conventional system, the number of receivers is limited to one. In contrast, multiple receivers are acceptable in the proposed system. These characteristics help reduce the of the isolation system for the gate driver supplies. This paper presents the fundamental characteristics of the isolation system. The equivalent circuit of the proposed system can be derived by applying the equivalent circuit of a wireless power transfer system with a repeater coil. In addtion, a design method for the resonance capacitors is mathematically introduced using the equivalent circuit. It is verified that an isolation system with multiple receivers can be designed using the same resonance conditions as an isolation system with a single receiver. Moreover, the isolation system is experimentally demonstrated.
    [Show full text]
  • National Technical University of Athens
    National Technical University of Athens School οf Mechanical Engineering Machine Design Laboratory Diploma thesis Nikolaos Kallieros Analysis and design of a linear electromagnetic mass accelerator (railgun) using computational methods Supervisor: Dr. V. Spitas Associate Professor NTU Athens Athens, July 2020 2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Νικόλαος Καλλιέρος Ανάλυση και σχεδιασμός ηλεκτρομαγνητικού γραμμικού επιταχυντή μαζών με χρήση υπολογιστικών μεθόδων Επιβλέπων: Βασίλειος Σπιτάς Επίκουρος Καθηγητής Ε.Μ.Π. Αθήνα, Ιούλιος 2020 3 4 5 6 Ευχαριστίες Πρώτα από όλα, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή κύριο Bασίλειο Σπιτά, για την πολύτιμη βοήθειά του τόσο κατά την εκπόνηση της παρούσας διπλωματικής όσο και για όλη την φοιτητική μου σταδιοδρομία για της πολύτιμες συμβουλές και πολλές γνώσεις που μου έδωσε. Θα ήθελα ακόμη να ευχαριστήσω την οικογένειά μου για όλη τους την στήριξη τόσο κατά την διάρκεια των σπουδών μου αλλά και για την αγάπη που μου έδωσαν όλα αυτά τα χρόνια. Θα ήθελα να ξεχωρίσω ένα πρόσωπο, τον πατέρα μου που από μικρό μου εμφύσησε την αγάπη για τις φυσικές επιστήμες, και την αναλυτική σκέψη. Τέλος θα ήθελα να ευχαριστήσω και τους συμφοιτητές και φίλους Αλέξανδρο Αναστασιάδη, Κωνσταντίνο Αθανασόπουλο και Αριστοτέλη Παπαθεoδώρου τόσο για την καλή παρέα, όσο και για την άριστη συνεργασία στο επίπεδο της σχολής. 7 8 Abstract In this thesis the design of a novel, efficient high-speed electromagnetic mass accelerator is proposed and analyzed. To do so, a theory is put forth to investigate the way electromagnetic force is produced, as well as the parameters that affect it the most. To investigate its validity, the theory was applied for the analysis of classic electromechanical devices such as the induction and dc motors, as well as for Thompson’s jumping ring apparatus.
    [Show full text]
  • The Radio Amateur's Hand Book
    THE RADIO AMATEUR'S HAND BOOK A. Frederick Collins, Inventor of the Wireless Telephone, 1899. Awarded Gold Medal for same, Alaska Yukon Pacific Exposition, 1909. THE RADIO AMATEUR'S HAND BOOK A Complete, Authentic and Informative Work on Wireless Telegraphy and Telephony BY FREDERICK COLLINS Inventor of the Wireless Telephone 1899; Historian of Wireless 1901-1910; Author of "Wireless Telegraphy" 1905 1922 TO WILLIAM MARCONI INVENTOR OF THE WIRELESS TELEGRAPH INTRODUCTION Before delving into the mysteries of receiving and sending messages without wires, a word as to the history of the art and its present day applications may be of service. While popular interest in the subject has gone forward by leaps and bounds within the last two or three years, it has been a matter of scientific experiment for more than a quarter of a century. The wireless telegraph was invented by William Marconi, at Bologna, Italy, in 1896, and in his first experiments he sent dot and dash signals to a distance of 200 or 300 feet. The wireless telephone was invented by the author of this book at Narberth, Penn., in 1899, and in his first experiments the human voice was transmitted to a distance of three blocks. The first vital experiments that led up to the invention of the wireless telegraph were made by Heinrich Hertz, of Germany, in 1888 when he showed that the spark of an induction coil set up electric oscillations in an open circuit, and that the energy of these waves was, in turn, sent out in the form of electric waves.
    [Show full text]
  • 1^3 £ <$5 MHI TM ^0-4851 JAPANESE-ENGLISH GLOSSARY
    1^3 £ <$5 MHI TM ^0-4851 WAR DEPARTMENT TECHNICAL MANUAL ^ JAPANESE-ENGLISH GLOSSARY TECHNICAL COMMUNICATION TERMS May 1, 1943 JAPANESE CHARACTERS ENGLISH EQUIVALENT PRONUNCIATION ^ ITSU. ICHI, BITOISU ONE. SINGLE, PRIMARY /£ J < /k ICHIJI KOIRU PRIMARY COIL >£ 7 1 y * -i -y-f ICHIJI RAIK SUVITCHI PRIMARY LINE SIIICH ;i ia f& ICHIJI KAIRO PRIMARY CIRCUIT -~;*3fc« ICHIJI HOSNA PRIMARY EMISSION -*©t£#*&%V ICHfjl INKYOKU AHBU PRIMARY DARK SPACE -©fctt ICHIJI DENSHI PRIMARY ELECTRON PRIMARY CELL. -©*t;t ICHIJI BENCH! PRIMARY BATTERY -;fct# ICHIJI DENATSU PRIMARY VOLTAGE -^*5IS ICHIJI SENRIN PRIMARY COIL - a£«3 a ISStNKA NAHARI LEAD MONOXIDE, LITHARGE -$ «*£ ISSEI YOB 1 DASH 1 SIMULTANEOUS CALLING j=- SAN, HI, HITTSU THREE ^tfia%- SANJI KAIRO TERTIARY CIRCUIT 5.ft*S*Si SANKAKU KESSEN DELTA CONNECTION 5-*tt**« SAN HAKISEN HENSEIKI THREE-KINDING TRANSFORMS i*S SAKSO THREE-PHASE TRIPLE-PETTICOAT (THREE- ^f*^ SANJU CAISHI SECTION) INSULATOR SANKTOKU SHIKKUKAK TRIODE, THREE-ELECTRODE ^-*4«f VACUUM TUBE TRIODE, THREE-ELECTRODE ^-ttf SANKTOKUKAN TUBE UP. UPPER. ABOVE. HIGH. i JO. UE, KAMI BETTER *i -;&f JO SOKUHATAI UPPER SIDE BAND -t--W JOBU SEN UPPER LI HE T GE. SHIT*. SHIHO, (A LOK, LOKR, OOKN fttri.y 1-ft$L GfDJK BURtNKU FUG8 LETTER-BLANK SIGNAL T ?(>.*? KtBU SEN DOKN-LIKE. LOKR-LINE Z- Zl), FU. BU NOH-, NEGATIVE. NOT *m FU BYO"S KAI NON-UNIFORM FIELD y-tto FU HE IKS UNBALANCE. UNBALANCED * £ T* FU KANRT9 TOBI INEFFECTIVE CALL T|U*tt FURTO D8TAI BAD CONDUCTOR *£ ;& FUKAI HA UNDISTORTED HAVE ^4fttdia>fr FU SHIHD5 KAIPO APERIODIC CIRCUIT *«#)#: FU SHINDO HODEN NON-OSCILLATORY DISCHARGE x&to-A® FU SHIND3 EEKPUKU APERIODIC DAMPING SERVICE INTERRUPTION, £ii FUTSU BROKEN COMMUNICATION TS-H&X&&.
    [Show full text]
  • Western Electric H1 Type Carrier Telephone Equipment
    TABLE OF CONTENTS Page 1. INTRODUCTION. 1 General. .. 1 List of Drawings ........... , . 2 TestiQ.g Equipment. 3 2. DESCRIPTION AND FUNCTIONS OF COMPONENT UNITS. 5 Terminal Panel. 5 Line and Balancing Equipment ....... ; . 10 Repeaters. 10 Carrier Transfer Equipment. 13 3. POWER SUPPLY REQUIREMENTS. 13 TerminaL . 13 Repeater. 13 4. TRANSMISSION PERFORMANCE. 14 Transmitting and Receiving Gain. 14 Operating Levels .................. .... ....... .... .............. ~ . 16 Transmitting Signaling Power . .. 16 Carrier Supply... 16 Repeater. 17 Transmission Range of System Without Intermediate Repeater. 17 Effects of Repeaters on Transmission Range. 19 Overall System Transmission-Frequency Characteristics ....... ..................... 20 Overall System Stability. 21 Load Capacity. 22 Crosstalk and Noise ............................................................ 22 5. CHARACTERISTICS OF OPEN-WIRE LINES AND CABLES .................. 22 Attenuation . 23 Characteristic Impedance . 25 Reflection Effects . 28 Cable Loading .......... , . 28 Impedance Matching Transformers ................ , . 30 Way Station Bridging Filter ....................................... ........... 32 6. APPLICATION TO SPECIFIC CASES ......................................... 34 Attenuation of Line. 35 Effect on Voice-Frequency Telephone Circuits ... ...... .............. ........... 39 Effect on Telegraph Circuits. 40 Crosstalk and Noise ............. .... .... .. ...... ............ , ............. 41 Signaling at Terminal Offices ... .............. ........... ............
    [Show full text]
  • Electr Ples of Telephony
    AUTOMATIC ELECTRIC TRAINING SERIES Bulletin ELECTR PLES OF TELEPHONY TELEPHONE SVSTEMS ORIGINATORS OF THE DIAL TELEPHONE This is one of the helpful booklets in the AUTOMATIC ELECTRIC TRAINING SERIES on STROWGER AUTOMATIC TELEPHONE SYSTEMS Electrical Principles of Telephony Mechanical Principles of Telephony Fundamentals of Apparatus and Trunking The Plunger Lineswitch and Associated Master -Switch Rotary Lineswitch The Connector The Selector Pulse Repeaters Trunking Power and Supervisory Equipment Party-Line Connectors and Trunk-Hunting Connectors Reverting-Call Methods The Test and Verification Switch Train Toll Switch Train Switching Selector -Repeater Private Automatic Exchanges with PABX Appendix Community Automatic Exchanges Manual Switchboards Linefinder Switches May we send you others pertaining to equipment in your exchange ? CONTENTS Part I .ELEMENTARY ELECTRICITY Electricity and its effects .............. 1 Electrical units ................. 1 Ohm's law .................. 1 Resistors in series ................ 1 Resistors in parallel ............... 2 Electric currents ................ 2 A-c circuits ................. 3 Conductors .................. 3 Insulators .................. 3 Part 2 .MAGNETISM 10. Magnets .................. 3 11. Theory of magnetism ............... 4 12. Electromagnets ................. 5 13. Relays ................... 5 14. Non-inductive coils ................ 7 16. Inductors .................. 7 Part 3 .SYMBOLS-CIRCUITS-FAULTS 16 . Symbols .................. 7 17. Combinations of apparatus .............
    [Show full text]
  • Field Wire and Field Cable Technologies
    Copy 3 C2 DtrAnLmcrnT OF THE ARMY FIELD MA!iNUAL FIELD WIRE AND FIELD CABLE TECHNIQUES jARTRIA$IIER SCHOOL tBPMY 3. RMbY QUATERMASIER SCaU FORT LsA.VAl 2381 "EADQUARTERS, DEPARTMENT OF THE ARMY MAY 1960 AGO 5766C *FM 24-20 FIELD MANUAL HEADQUARTERS, DEPARTMENT OF THE ARMY No. 24-20 WASHINGTON 25, D. C., 19 May 1960 FIELD WIRE AND FIELD CABLE TECHNIQUES Paragraph Page CHAPTER 1. INTRODUCTION ----------- 1-4 3 2. FIELD WIRE AND FIELD CABLE ----------- 5-8 5 3. SPLICING FIELD WIRE --- 9-15 15 4. TYING FIELD WIRE LINES 16-26 43 5. WIRE-LAYING AND WIRE- RECOVERING EQUIP- MENT ------------------- 27-36 60 6. POLE AND TREE CLIMBING Section I. Climbing equipment -37-42 79 II. Pole climbing -.- - - 43-49 90 III. Tree climbing -------- ___---- 50, 51 102 IV. First aid --------------------- 52-58 102 CHAPTER 7. FIELD WIRE LINE CONSTRUCTION Section I. Introduction ---------------- 59-61 111 II. Techniques of installing field wire lines -------------- 62-73 113 III. Constructing field wire lines under unusual conditions- . ..74-78 137 IV. Recovering field wire -- ___---- 79, 80 142 V. Field wire records ------------ 81-84 145 CHAPTER 8. AIR-LAYING OF FIELD WIRE AND FIELD CABLE 85-92 148 9. RAPID CONSTRUCTION OF SPIRAL-FOUR CABLE ON AERIAL SUPPORTS Section I. Laying the cable ------------- 93-101 156 II. A-Frame construction -------- 102-111 165 III. "Hasty Pole" construction ---- 112-124 181 *This manual supersedes FM 24-20, 17 May 1956. TAGO 5756C-May Paragraph Page CHAPTER 10. MAINTAINING FIELD WIRE LINES ------------ 125-131 197 11. COMMUNICATION EQUIP- MENT USED IN FIELD WIRE SYSTEMS Section I.
    [Show full text]
  • ED 136 600 FL 008 475 TITLE Chinese-English Electronics and Telecommunications Dictionary, Vol
    DOCUMENT EESUE13 ED 136 600 FL 008 475 TITLE Chinese-English Electronics and Telecommunications Dictionary, Vol. 2. INSTITUTION Air Force Systems Command, Wright-,Patterson AFB, Ohio. Foreign Technology Div. PUB DATE Jun 76 NOTE 1,000p.; For related documents, see FL 008 474-477; Portions in English may be difficult to read because the type is rather small. EDRS PRICE MF-$1.83 HC-$52.91 Plus Postage. DESCRIPTORS Automation; *Chinese; Computers; *Dictionaries; Electric Circuits; *Electronics; *English; Ideography; Reference Books; Resource Materials; Romanization; Technical Writing; *Telecommunication; Transistors; Vocabulary; Written language IDENTIFIERS China ABSTRACT This is the second volume of the Electronics and Telecommunications Dictionary, the third of the series of Chinese-English technical dictionaries under preparation by the Foreign Technology Division, United States Air Force Systems Command. Tbe purpose of the series is to provide rapid reference tools for translators, abstracters, and research analysts concerned with scientific and technical materials from Mainland China. This. dictionary coutains about 45,000 terms selected from sources pub1.i5hed in Mainland China. The terms included relate not only to genei-1 electronics, telecommunications, transistor electronics, computer technology, integrated circuits, etc., but also incorporate vocabulary from the basic sciences and the auxiliary technologies cloF,:y associated with electronics and telecommunications, such as navigation aids, automation, and television techniques. An alphabetic lookup system based en the "pinyin" spelling of Modern Standard Chinese is provided, as wel/ as a character index for users less familiar with the pinyin system. (Author/CLK) *********************************************************************** * Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effolt * * to obtain the best copy available.
    [Show full text]