Simulation of Electrical Characteristics for Misalignment of Coil in Wireless Power Transfer System Using Repeating Coil

Total Page:16

File Type:pdf, Size:1020Kb

Simulation of Electrical Characteristics for Misalignment of Coil in Wireless Power Transfer System Using Repeating Coil Proceedings of the 6th IIAE International Conference on Industrial Application Engineering 2018 Simulation of Electrical Characteristics for Misalignment of Coil in Wireless Power Transfer System Using Repeating Coil Akihiro Imakiire a,* , Hideaki Tokunaga a, Akihiro Kawagoe a, Masahiro Kozako a, Masayuki Hikita a aKyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu, 804-8550, Japan *Corresponding Author: [email protected] Abstract characteristic against misalignment of the coil is important to transmit power to the load with high efficiency. The This paper compares the electrical characteristics of the electrical characteristics of other coil types along with the S-P type and the repeating coil type wireless power transfer S-P type, and the repeating coil type have been compared (WPT) system. The features of the two types of WPT by many researchers (1, 4). However, it is difficult to compare systems are described if the output power is same value the electrical characteristics in the same condition, because using the same coil model. The current and voltage values all the types have different features, circuit configurations, of resonance capacitor are high, and the output power and coil shapes. Thus it becomes difficult to determine a decrease when misalignment of coil occurs. Therefore, condition that is suitable for both types of the WPT system. compensation method for misalignment is investigated to Moreover, several different parameters and electrical suppress this burden of resonance capacitor when characteristics exist, consuming lot of time to conduct a misalignment of coil occurs. These results are calculated simulation and investigation. from circuit equations based on the results of This paper compares the electrical characteristics of the electromagnetic analysis and are investigated for automatic S-P type and the repeating type WPT system. The features guided vehicle (AGV) applications. Thus, if the repeating of the two types WPT system are described if the output coil maintains the center position between the primary and power is the same value using same coil model. The current secondary coils, the repeating coil type can suppress the and voltage values of the resonance capacitor are high when burden of the resonance capacitor and improve the misalignment of the coli occurs. Therefore, compensation transmission power. method is investigated to suppress this burden of resonance capacitor when misalignment of coil occurs. These results Keywords : wireless power transfer, repeating coil, are calculated from circuit equations based on the results of automatic guided vehicle, relay coil. electromagnetic analysis and are investigated for automatic guided vehicle (AGV) applications. It is useful to search for 1. Introduction optimum design conditions in the WPT system. In literature (5), the burden of the resonance capacitor in In recent years, the wireless power transfer (WPT) the WPT system was investigated. In literatures (6) and (7), system has been researched for various applications, such compensation method for misalignment using control or as electric vehicles (EV). There are numerous circuit coil shapes were studied. In addition, The Literature configurations with different electrical characteristics(1-4). (8)-(10) showed the two types dynamic wireless power The circuit configuration of the S-P type WPT system is transfer system such as using parallel line feeder or relay commonly used for EV applications, which has two coil(repeating coil), respectively. On the other hand, we resonance capacitors: one is connected in series with the have been studied the WPT system using the repeating coil primary coil, and the other is connected in parallel with the which is controlled the position (11-12). In this paper, we secondary coil. On the other hand, the WPT system with a investigate the electrical characteristics, compensation repeating coil (repeating coil type) is well known for its method, and the burden of the capacitor, when the repeating robust performance in the coil position. The electrical DOI: 10.12792/iciae2018.018 81 © 2018 The Institute of Industrial Applications Engineers, Japan. S S S S Gap 7 1 3 5 S-P type i L D D D D 20 mm Secondary coil L1 1 7 1 3 5 IPM S 8 S S S 2 4 6 Primary coil V D D D D batt 8 2 4 6 0 x (Misalignment) mm PM motor driving system for AGV M S S 12 Gap 9 11 C L L C L Repeating coil type 1 1 r r 2 D D V 20 mm 1 3 dc Secondary coil Repeating coil S S 10 12 Primary coil D D r r r 2 4 1 M r M 2 1r r2 x Wireless power transfer system for AGV 0 (Misalignment) mm (a) System configuration (b) Coils model, and motion of repeating coil and secondary Fig. 1. Wireless Power Transfer System with Repeating Coil for Automatic Guided Vehicle. Table 1. Simulation condition. 2. Wireless power transfer system Parameters Value configuration for automatic guided vehicle Input voltage V1 (S-P type) 141 Vrms Input voltage V1 (Repeating coil type) 141 Vrms 2.1 Overall WPT system for AGV Input voltage V ’ (Repeating coil type) 1 Figures 1 (a) and (b) show the WPT system for AGV The output power is same value in the S-P type 254 V rms investigated thus far. Figure 1(a), shows the voltage booster and the repeating coil type that controls the battery current, DC link capacitor used V Frequency of input voltage 1 25 kHz commonly in the WPT system, and three phase inverter for G Gap length 20 mm motor of AGV. Figure 1 (b) shows the coil model and X Misalignment 0-80 mm motions of repeating coil and secondary coils. The R Load resistance L 100 Ω secondary coil position means the AGV position. In L Inductance 1(S-P type)@No misalignment 638 µH contrast, the repeating coil is set at the center between the L Inductance 2(S-P type)@No misalignment 637 µH primary and secondary coils to keep the output voltage L Inductance 1(Repeating coil type) constant. In other words, the repeating coil is controlled to 573 µH @No misalignment suppress the decrease in the output power. Inductance Lr(Repeating coil type) 638 µH 2.2 Simulation model of the S-P type and the @No misalignment repeating coil type Inductance L2(Repeating coil type) 638 µH @No misalignment Figure 2 shows the simulation model of the S-P type and Resonance capacitor C1(S-P type) 92 nF the repeating coil type. In both these types, the coil shape Resonance capacitor C2(S-P type) 64 nF and the number of turns are similar. However, with addition Resonance capacitor C1(Repeating coil type) 71 nF of the repeating coil type, the repeating coil is set at the Resonance capacitor Cr(Repeating coil type) 71 nF center of the primary and secondary coils. The gap length Internal resistance of coil r1, rr, r2 0.173 Ω and misalignment is defined in Fig. (1). In the simulation, Relative permeability of ferrite core 2300 misalignment is a parameter. The simulation condition, 125 ×125 ×5 physical property values, and size of coil are summarized in Ferrite core size [mm] Table 1. In addition, the input voltage V1 and the load R Diameter of coil Φ175 mm resistance L were set as sine waveforms and 100 Ω, Number of turns of coil 75 respectively, in the simulation. First, the output voltage and current of coil were simulated using electromagnetic analysis (ANSYS, coil maintains at the center of the primary and secondary Maxwell and Simplorer), and the inductance and mutual coils. inductance were calculated as parameters as shown in Fig. 82 Circuit simulation model (1) I2 I1 I1 I2 VVout V out 1V1 (2) Coil model 2 ωMr 2 ωM 1rMr 2 L2 − M 12 − L − M 1 − 1 2 12 C ωLr − ωLr − 1 ωCr ωCr 2 C (a) The S-P type ωM 1r ωM 1rMr 2 L1 − M 12 − 2 1 − 1 R ωLr − ωLr − L ωCr ωCr Circuit simulation model L − M 1 12 Irr ωM 1rMr 2 VVr M 12 − r 1 ∞ ωLr − ωCr I1 I2 I I L1 − M12 L2 − M12 1 2 1 RL C = 1 2 ω (L1 + L2 − 2M12 ) Vout V1 Vout V1 Coil model Fig. 3 Equivalent circuit model of the repeating coil type. 2.3 Equation model of the S-P type and the repeating coil type Equations of the S-P type and the repeating coil type are expressed as (1) and (2), respectively. The resonance (b) The repeating coil type capacitor value is decided to set the power factor of circuit Fig. 2 Simulation model using electromagnetic analysis. at 1.0. In addition, the equivalent circuit model of repeating type is shown in Fig. 3. It can be seen that the equivalent 2. circuit model of repeating coil type is similar to that of the Next, the simulation results using electromagnetic S-P type system. Furthermore, if the mutual inductances software and the calculation results using circuit equations M1r and Mr2 have the same value, and the repeating were compared. As a result, the validity of calculation resonance capacitor value is chosen as the resonance results was confirmed using circuit equations. Note that the frequency with repeating coil Lr, the output voltage can be calculation results derived using parameters such as constant. In this condition, resonance capacitor C2 is not inductance and mutual inductance were simulated using needed. Therefore, if the repeating coil position controls the electromagnetic software. The circuit equations are useful center between the primary and secondary coils, the output to design the WPT system when the influence of the voltage can be maintained constant with the input voltage parameter on the electrical characteristics of the WPT value Vin .
Recommended publications
  • Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-Voltage Inverter Paper
    電気学会論文誌●(●●●●●●●部門誌) IEEJ Transactions on ●●●●●●●●●●●●●●● Vol.●● No.● pp.●-● DOI: ●.●●/ieejeiss.●●.● Paper Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-voltage Inverter * * * Keisuke Kusaka , Student member, Koji Orikawa, Member , Jun-ichi Itoh, Member a) ** ** ** Isamu Hasegawa , Non-member, Kazunori Morita , Member, Takeshi Kondo , Non-member (Manuscript received Jan. 00, 20XX, revised May 00, 20XX) In this paper, a gate driver supply, which supplies power to multiple gate drivers, is demonstrated. Robust isolation is required in the gate drive supplies of a medium-voltage inverter in order to drive high-voltage switching devices such as insulated-gate bipolar transistors. The proposed isolation system achieves isolation with transmission coils mounted on printed circuit boards. Furthermore, the isolation system transmits power from one transmitting board to six receiving boards. In the conventional system, the number of receivers is limited to one. In contrast, multiple receivers are acceptable in the proposed system. These characteristics help reduce the of the isolation system for the gate driver supplies. This paper presents the fundamental characteristics of the isolation system. The equivalent circuit of the proposed system can be derived by applying the equivalent circuit of a wireless power transfer system with a repeater coil. In addtion, a design method for the resonance capacitors is mathematically introduced using the equivalent circuit. It is verified that an isolation system with multiple receivers can be designed using the same resonance conditions as an isolation system with a single receiver. Moreover, the isolation system is experimentally demonstrated. It is confirmed that the isolation system transmits power with a maximum efficiency of 46.9% at an output power of 16.6 W beyond an air gap of 50 mm with only printed circuit boards.
    [Show full text]
  • Field Wire Techniques
    MHI DEPARTMENT OF THE ARMY FIELD MANUAL DEPATMENOFTH RMA TENAY1 DEPARTMENT OF THE ARMY * MAY 1956 *FM 24-20 FIELD MANUALl DEPARTMENT OF THE ARNMY No. 24-20 | WASHIGTON 25, D. C., 17 May 1956 FIELD-WIRE TECHNIQUES Paragraph Page CHAPTER 1. INTRODUCTION -------- 1-4 3 2. WIRE WD-1/TT Section I. Introduction -------------- 5, 6 5 II. Splicing ------------------ 7-11 6 III. Field-wire ties ------------- 12-22 23 CHAPTER 3. FIELD CABLES --------- 23-26 39 4. WIRE-LAYING AND WIRE-RECOVERY EQUIPMENTS --------- 27-35 52 5. POLE AND TREE CLIMBING Section I. Climbing equipment ------- 36-41 67 II. Pole climbing ------------- 42-48 77 III. Tree climbing ----------- 49, 50 88 CHAPTER 6. FIELD-WIRE LINE CON- STRUCTION Section I. Planning ----------------- 51-57 90 II. Orders and records --------- 58-62 96 III. Field-wire construction tech- niques ------------ 63-72 102 IV. Construction under unusual conditions -------------- 73-77 118 CHAPTER 7. MAINTENANCE OF F I E L D - W I R E SYSTEMS ------------ 78-84 122 8. CHARACTERISTICS OF COMMUNICATION EQUIPMENT Section I. Introduction ------------- 85, 86 132 II. Field telephones ---------- 87-92 133 *This manual supersedes FM 24-20, 4 October 1948. 380833°--56-1 1 Paragraph Page CHAPTER 8. CHARACTERISTICS OF COMMUNICATION EQUIPMENT-Con. Section III. Manual telephone switch- boards ------------- 93-96 140 IV. Field teletypewriters ------ 97-99 147 V. Telephone repeaters ----- 100-103 151 VI. Telegraph-Telephone Ter- minal AN/TCC-14 ------ 104-108 156 VII. Terminals ---------------- 109-111 162 VIII. Repeating coils ----------- 112-114 165 IX. Test equipment ----------- 115-119 174 CHAPTER 9. TELEPHONE SWITCH- BOARD OPERATION___ 120-124 183 APPENDIX I.
    [Show full text]
  • IBM Confidential Field Engineering Education Student Self-Study Course
    Field Engineering Education Student Self-Study Course IBM Confidential Field Engineering Education Student Self-Study Course IBM CDnfidential This document contains information of a proprietary nature. ALL INFORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFI­ DENCE. None of this information shall be divulged to persons other than: IBM employees authorized by the nature of their duties to receive such information or individuals or organizations authorized by the Field Engineering Division in accordance with existing policy regarding release of company information. Common Carrier Facilities for Teleprocessing PREFACE This course is provided to acquaint Customer Engi­ neers with some of the important concepts of Com­ mon Carrier equipment and facilities as used in Teleprocessing environment. This course will also provide the Customer Engineer with a permanent reference for these facilities. Address comments concerning the contents of this publication to: IBM Corporation, Field Engineering Education, Dept. 911, Poughkeepsie, N. Y., 12602 Printed March 1966 IBM CONFIDENTIAL CONTENTS SECTION 1. TELEGRAPH SESSION 3, LONG DISTANCE SYSTEMS • 39 Review Questions 40 SESSION 1, TELEGRAPH SYSTEMS 5 Telegraph Principles 6 SESSION 4, CHANNEL FACILITIES. 41 Transmission Methods • 6 Channels Necessary • 41 Functional Units 6 Grades of Channels • 41 Polar Relays 6 Review Questions 43 Junction Boxes 6 Line Arrestor (Heat) Coils 9 SESSION 5, CIRCUIT CHARACTERISTICS • 45 Repeaters 9 Review Questions 47 Representative Type Equipment 11 Basic Telegraph Circuit
    [Show full text]
  • From: Limitation Changes To: From: Authority This Page Is Unclassified
    UNCLASSIFIED AD NUMBER ADA800127 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to DoD only; Administrative/Operational Use; 31 JAN 1942. Other requests shall be referred to Office of Scientific Research and Development, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only. AUTHORITY SOD memo dtd 2 Aug 1960; SOD memo dtd 2 Aug 1960 THIS PAGE IS UNCLASSIFIED '."Stv,, ., t ,, ., - •>• .,,ii-/...y1,i^\t. , -:'.'' >. Itil'.'fV, V, •fJ'W; , \'- ' , ..".l h „./:•' 0,1 >'.'• ,, ,1 ! l " •»> .•t "',' t'JVi, >y,.i».\}, \ <..'•, •;* ü' l ,: ' . i <!' <" '1 • '1' Vu ''L'T v\ " PIED •• .,"• '>V!;. 'I'V.l/.Vr»;»-«!", •// ? *, , ft v11 V U' V!Y ^ sEiMCES TECHNICAL INFORMATION ÄßENff ••'::-;.«'^ U 31 ON II, Ä'V?' ''" -»-' /./{ •* .*'-i<»vVw.-'.-j.' .. ;*-: t CLASSIFICATION CHANOED J —4-- .= "P0 -UN^LÄSSlEijEL'Ö •"' r ^ : 1^ FR0jyi CON'FIDE:Nf;tAL .". - I 1 SBC. s6f EOT^ -ÜP&Gt* £'.ACTGU^eä f I r: : J »n5 vi'^'-V.".'"-/^!."^' '"^".'K'A'-V^W^'T •iiß^.-iJ^fig^s^Sä! Reproduced by o WgZ&m c EH Tfl fl L flIB DOCUmtHTS OFFICE I vS di ID © | •— — ! — *—!— U\M f -VJ^=—"\ /V U WRIGHT-PATTERSON AIR FORCE BASE- DAYTON.OHIO "V r- > IS ABSOLVED ROM ANY LITIGATION WHICH ENSUE FROM ANY SSFRSNGÜ AENT ON DOMESTIC OR PATENT RIGHTS MAY BE INVOLVED. tiXiJMSMUSwnt' 's&'zttKx^hzj&syazjs*, -.V LOW CONTRAST COPY 1-1 RIGINAL DOCUMENTS AY BE OBTAINED O ii LOAN ROM •u-i :S If ^ •m L. 63157 Speech Privacy Decoding - Final Report, January 31, W42- Parts X - H (None) Heising, B.
    [Show full text]
  • Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-Voltage Inverter
    IEEJ Journal of Industry Applications Vol.5 No.3 pp.206–214 DOI: 10.1541/ieejjia.5.206 Paper Galvanic Isolation System with Wireless Power Transfer for Multiple Gate Driver Supplies of a Medium-voltage Inverter ∗ ∗ Keisuke Kusaka Student Member, Koji Orikawa Member ∗a) ∗∗ Jun-ichi Itoh Member, Isamu Hasegawa Non-member ∗∗ ∗∗ Kazunori Morita Member, Takeshi Kondo Non-member (Manuscript received April 30, 2015, revised Sep. 12, 2015) In this paper, a gate driver supply, which supplies power to multiple gate drivers, is demonstrated. Robust isolation is required in the gate drive supplies of a medium-voltage inverter in order to drive high-voltage switching devices such as insulated-gate bipolar transistors. The proposed isolation system achieves isolation with transmission coils mounted on printed circuit boards. Furthermore, the isolation system transmits power from one transmitting board to six receiving boards. In the conventional system, the number of receivers is limited to one. In contrast, multiple receivers are acceptable in the proposed system. These characteristics help reduce the of the isolation system for the gate driver supplies. This paper presents the fundamental characteristics of the isolation system. The equivalent circuit of the proposed system can be derived by applying the equivalent circuit of a wireless power transfer system with a repeater coil. In addtion, a design method for the resonance capacitors is mathematically introduced using the equivalent circuit. It is verified that an isolation system with multiple receivers can be designed using the same resonance conditions as an isolation system with a single receiver. Moreover, the isolation system is experimentally demonstrated.
    [Show full text]
  • National Technical University of Athens
    National Technical University of Athens School οf Mechanical Engineering Machine Design Laboratory Diploma thesis Nikolaos Kallieros Analysis and design of a linear electromagnetic mass accelerator (railgun) using computational methods Supervisor: Dr. V. Spitas Associate Professor NTU Athens Athens, July 2020 2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Νικόλαος Καλλιέρος Ανάλυση και σχεδιασμός ηλεκτρομαγνητικού γραμμικού επιταχυντή μαζών με χρήση υπολογιστικών μεθόδων Επιβλέπων: Βασίλειος Σπιτάς Επίκουρος Καθηγητής Ε.Μ.Π. Αθήνα, Ιούλιος 2020 3 4 5 6 Ευχαριστίες Πρώτα από όλα, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή κύριο Bασίλειο Σπιτά, για την πολύτιμη βοήθειά του τόσο κατά την εκπόνηση της παρούσας διπλωματικής όσο και για όλη την φοιτητική μου σταδιοδρομία για της πολύτιμες συμβουλές και πολλές γνώσεις που μου έδωσε. Θα ήθελα ακόμη να ευχαριστήσω την οικογένειά μου για όλη τους την στήριξη τόσο κατά την διάρκεια των σπουδών μου αλλά και για την αγάπη που μου έδωσαν όλα αυτά τα χρόνια. Θα ήθελα να ξεχωρίσω ένα πρόσωπο, τον πατέρα μου που από μικρό μου εμφύσησε την αγάπη για τις φυσικές επιστήμες, και την αναλυτική σκέψη. Τέλος θα ήθελα να ευχαριστήσω και τους συμφοιτητές και φίλους Αλέξανδρο Αναστασιάδη, Κωνσταντίνο Αθανασόπουλο και Αριστοτέλη Παπαθεoδώρου τόσο για την καλή παρέα, όσο και για την άριστη συνεργασία στο επίπεδο της σχολής. 7 8 Abstract In this thesis the design of a novel, efficient high-speed electromagnetic mass accelerator is proposed and analyzed. To do so, a theory is put forth to investigate the way electromagnetic force is produced, as well as the parameters that affect it the most. To investigate its validity, the theory was applied for the analysis of classic electromechanical devices such as the induction and dc motors, as well as for Thompson’s jumping ring apparatus.
    [Show full text]
  • The Radio Amateur's Hand Book
    THE RADIO AMATEUR'S HAND BOOK A. Frederick Collins, Inventor of the Wireless Telephone, 1899. Awarded Gold Medal for same, Alaska Yukon Pacific Exposition, 1909. THE RADIO AMATEUR'S HAND BOOK A Complete, Authentic and Informative Work on Wireless Telegraphy and Telephony BY FREDERICK COLLINS Inventor of the Wireless Telephone 1899; Historian of Wireless 1901-1910; Author of "Wireless Telegraphy" 1905 1922 TO WILLIAM MARCONI INVENTOR OF THE WIRELESS TELEGRAPH INTRODUCTION Before delving into the mysteries of receiving and sending messages without wires, a word as to the history of the art and its present day applications may be of service. While popular interest in the subject has gone forward by leaps and bounds within the last two or three years, it has been a matter of scientific experiment for more than a quarter of a century. The wireless telegraph was invented by William Marconi, at Bologna, Italy, in 1896, and in his first experiments he sent dot and dash signals to a distance of 200 or 300 feet. The wireless telephone was invented by the author of this book at Narberth, Penn., in 1899, and in his first experiments the human voice was transmitted to a distance of three blocks. The first vital experiments that led up to the invention of the wireless telegraph were made by Heinrich Hertz, of Germany, in 1888 when he showed that the spark of an induction coil set up electric oscillations in an open circuit, and that the energy of these waves was, in turn, sent out in the form of electric waves.
    [Show full text]
  • 1^3 £ <$5 MHI TM ^0-4851 JAPANESE-ENGLISH GLOSSARY
    1^3 £ <$5 MHI TM ^0-4851 WAR DEPARTMENT TECHNICAL MANUAL ^ JAPANESE-ENGLISH GLOSSARY TECHNICAL COMMUNICATION TERMS May 1, 1943 JAPANESE CHARACTERS ENGLISH EQUIVALENT PRONUNCIATION ^ ITSU. ICHI, BITOISU ONE. SINGLE, PRIMARY /£ J < /k ICHIJI KOIRU PRIMARY COIL >£ 7 1 y * -i -y-f ICHIJI RAIK SUVITCHI PRIMARY LINE SIIICH ;i ia f& ICHIJI KAIRO PRIMARY CIRCUIT -~;*3fc« ICHIJI HOSNA PRIMARY EMISSION -*©t£#*&%V ICHfjl INKYOKU AHBU PRIMARY DARK SPACE -©fctt ICHIJI DENSHI PRIMARY ELECTRON PRIMARY CELL. -©*t;t ICHIJI BENCH! PRIMARY BATTERY -;fct# ICHIJI DENATSU PRIMARY VOLTAGE -^*5IS ICHIJI SENRIN PRIMARY COIL - a£«3 a ISStNKA NAHARI LEAD MONOXIDE, LITHARGE -$ «*£ ISSEI YOB 1 DASH 1 SIMULTANEOUS CALLING j=- SAN, HI, HITTSU THREE ^tfia%- SANJI KAIRO TERTIARY CIRCUIT 5.ft*S*Si SANKAKU KESSEN DELTA CONNECTION 5-*tt**« SAN HAKISEN HENSEIKI THREE-KINDING TRANSFORMS i*S SAKSO THREE-PHASE TRIPLE-PETTICOAT (THREE- ^f*^ SANJU CAISHI SECTION) INSULATOR SANKTOKU SHIKKUKAK TRIODE, THREE-ELECTRODE ^-*4«f VACUUM TUBE TRIODE, THREE-ELECTRODE ^-ttf SANKTOKUKAN TUBE UP. UPPER. ABOVE. HIGH. i JO. UE, KAMI BETTER *i -;&f JO SOKUHATAI UPPER SIDE BAND -t--W JOBU SEN UPPER LI HE T GE. SHIT*. SHIHO, (A LOK, LOKR, OOKN fttri.y 1-ft$L GfDJK BURtNKU FUG8 LETTER-BLANK SIGNAL T ?(>.*? KtBU SEN DOKN-LIKE. LOKR-LINE Z- Zl), FU. BU NOH-, NEGATIVE. NOT *m FU BYO"S KAI NON-UNIFORM FIELD y-tto FU HE IKS UNBALANCE. UNBALANCED * £ T* FU KANRT9 TOBI INEFFECTIVE CALL T|U*tt FURTO D8TAI BAD CONDUCTOR *£ ;& FUKAI HA UNDISTORTED HAVE ^4fttdia>fr FU SHIHD5 KAIPO APERIODIC CIRCUIT *«#)#: FU SHINDO HODEN NON-OSCILLATORY DISCHARGE x&to-A® FU SHIND3 EEKPUKU APERIODIC DAMPING SERVICE INTERRUPTION, £ii FUTSU BROKEN COMMUNICATION TS-H&X&&.
    [Show full text]
  • Western Electric H1 Type Carrier Telephone Equipment
    TABLE OF CONTENTS Page 1. INTRODUCTION. 1 General. .. 1 List of Drawings ........... , . 2 TestiQ.g Equipment. 3 2. DESCRIPTION AND FUNCTIONS OF COMPONENT UNITS. 5 Terminal Panel. 5 Line and Balancing Equipment ....... ; . 10 Repeaters. 10 Carrier Transfer Equipment. 13 3. POWER SUPPLY REQUIREMENTS. 13 TerminaL . 13 Repeater. 13 4. TRANSMISSION PERFORMANCE. 14 Transmitting and Receiving Gain. 14 Operating Levels .................. .... ....... .... .............. ~ . 16 Transmitting Signaling Power . .. 16 Carrier Supply... 16 Repeater. 17 Transmission Range of System Without Intermediate Repeater. 17 Effects of Repeaters on Transmission Range. 19 Overall System Transmission-Frequency Characteristics ....... ..................... 20 Overall System Stability. 21 Load Capacity. 22 Crosstalk and Noise ............................................................ 22 5. CHARACTERISTICS OF OPEN-WIRE LINES AND CABLES .................. 22 Attenuation . 23 Characteristic Impedance . 25 Reflection Effects . 28 Cable Loading .......... , . 28 Impedance Matching Transformers ................ , . 30 Way Station Bridging Filter ....................................... ........... 32 6. APPLICATION TO SPECIFIC CASES ......................................... 34 Attenuation of Line. 35 Effect on Voice-Frequency Telephone Circuits ... ...... .............. ........... 39 Effect on Telegraph Circuits. 40 Crosstalk and Noise ............. .... .... .. ...... ............ , ............. 41 Signaling at Terminal Offices ... .............. ........... ............
    [Show full text]
  • Electr Ples of Telephony
    AUTOMATIC ELECTRIC TRAINING SERIES Bulletin ELECTR PLES OF TELEPHONY TELEPHONE SVSTEMS ORIGINATORS OF THE DIAL TELEPHONE This is one of the helpful booklets in the AUTOMATIC ELECTRIC TRAINING SERIES on STROWGER AUTOMATIC TELEPHONE SYSTEMS Electrical Principles of Telephony Mechanical Principles of Telephony Fundamentals of Apparatus and Trunking The Plunger Lineswitch and Associated Master -Switch Rotary Lineswitch The Connector The Selector Pulse Repeaters Trunking Power and Supervisory Equipment Party-Line Connectors and Trunk-Hunting Connectors Reverting-Call Methods The Test and Verification Switch Train Toll Switch Train Switching Selector -Repeater Private Automatic Exchanges with PABX Appendix Community Automatic Exchanges Manual Switchboards Linefinder Switches May we send you others pertaining to equipment in your exchange ? CONTENTS Part I .ELEMENTARY ELECTRICITY Electricity and its effects .............. 1 Electrical units ................. 1 Ohm's law .................. 1 Resistors in series ................ 1 Resistors in parallel ............... 2 Electric currents ................ 2 A-c circuits ................. 3 Conductors .................. 3 Insulators .................. 3 Part 2 .MAGNETISM 10. Magnets .................. 3 11. Theory of magnetism ............... 4 12. Electromagnets ................. 5 13. Relays ................... 5 14. Non-inductive coils ................ 7 16. Inductors .................. 7 Part 3 .SYMBOLS-CIRCUITS-FAULTS 16 . Symbols .................. 7 17. Combinations of apparatus .............
    [Show full text]
  • Field Wire and Field Cable Technologies
    Copy 3 C2 DtrAnLmcrnT OF THE ARMY FIELD MA!iNUAL FIELD WIRE AND FIELD CABLE TECHNIQUES jARTRIA$IIER SCHOOL tBPMY 3. RMbY QUATERMASIER SCaU FORT LsA.VAl 2381 "EADQUARTERS, DEPARTMENT OF THE ARMY MAY 1960 AGO 5766C *FM 24-20 FIELD MANUAL HEADQUARTERS, DEPARTMENT OF THE ARMY No. 24-20 WASHINGTON 25, D. C., 19 May 1960 FIELD WIRE AND FIELD CABLE TECHNIQUES Paragraph Page CHAPTER 1. INTRODUCTION ----------- 1-4 3 2. FIELD WIRE AND FIELD CABLE ----------- 5-8 5 3. SPLICING FIELD WIRE --- 9-15 15 4. TYING FIELD WIRE LINES 16-26 43 5. WIRE-LAYING AND WIRE- RECOVERING EQUIP- MENT ------------------- 27-36 60 6. POLE AND TREE CLIMBING Section I. Climbing equipment -37-42 79 II. Pole climbing -.- - - 43-49 90 III. Tree climbing -------- ___---- 50, 51 102 IV. First aid --------------------- 52-58 102 CHAPTER 7. FIELD WIRE LINE CONSTRUCTION Section I. Introduction ---------------- 59-61 111 II. Techniques of installing field wire lines -------------- 62-73 113 III. Constructing field wire lines under unusual conditions- . ..74-78 137 IV. Recovering field wire -- ___---- 79, 80 142 V. Field wire records ------------ 81-84 145 CHAPTER 8. AIR-LAYING OF FIELD WIRE AND FIELD CABLE 85-92 148 9. RAPID CONSTRUCTION OF SPIRAL-FOUR CABLE ON AERIAL SUPPORTS Section I. Laying the cable ------------- 93-101 156 II. A-Frame construction -------- 102-111 165 III. "Hasty Pole" construction ---- 112-124 181 *This manual supersedes FM 24-20, 17 May 1956. TAGO 5756C-May Paragraph Page CHAPTER 10. MAINTAINING FIELD WIRE LINES ------------ 125-131 197 11. COMMUNICATION EQUIP- MENT USED IN FIELD WIRE SYSTEMS Section I.
    [Show full text]
  • ED 136 600 FL 008 475 TITLE Chinese-English Electronics and Telecommunications Dictionary, Vol
    DOCUMENT EESUE13 ED 136 600 FL 008 475 TITLE Chinese-English Electronics and Telecommunications Dictionary, Vol. 2. INSTITUTION Air Force Systems Command, Wright-,Patterson AFB, Ohio. Foreign Technology Div. PUB DATE Jun 76 NOTE 1,000p.; For related documents, see FL 008 474-477; Portions in English may be difficult to read because the type is rather small. EDRS PRICE MF-$1.83 HC-$52.91 Plus Postage. DESCRIPTORS Automation; *Chinese; Computers; *Dictionaries; Electric Circuits; *Electronics; *English; Ideography; Reference Books; Resource Materials; Romanization; Technical Writing; *Telecommunication; Transistors; Vocabulary; Written language IDENTIFIERS China ABSTRACT This is the second volume of the Electronics and Telecommunications Dictionary, the third of the series of Chinese-English technical dictionaries under preparation by the Foreign Technology Division, United States Air Force Systems Command. Tbe purpose of the series is to provide rapid reference tools for translators, abstracters, and research analysts concerned with scientific and technical materials from Mainland China. This. dictionary coutains about 45,000 terms selected from sources pub1.i5hed in Mainland China. The terms included relate not only to genei-1 electronics, telecommunications, transistor electronics, computer technology, integrated circuits, etc., but also incorporate vocabulary from the basic sciences and the auxiliary technologies cloF,:y associated with electronics and telecommunications, such as navigation aids, automation, and television techniques. An alphabetic lookup system based en the "pinyin" spelling of Modern Standard Chinese is provided, as wel/ as a character index for users less familiar with the pinyin system. (Author/CLK) *********************************************************************** * Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effolt * * to obtain the best copy available.
    [Show full text]