Terminology of Entomology a Brief Dictionary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Magazine of the British Dragonfly Society Spring 2013 Favourite Days 30Th Anniversary Stamp Issue
Dragonfly 63 NewsThe Magazine of the British Dragonfly Society Spring 2013 www.british-dragonflies.org.uk Favourite Days 30th Anniversary stamp issue Observations On the Trail of the Orange-spotted Emerald Dragonfly News 63 The Magazine of the British Dragonfly Society Published twice a year, in April and October, Dragonfly News covers all aspects of the British Dragonfly Society’s field, recording, monitoring, research, conservation and social activities, as well as information from the wider dragonfly, natural history and conservation world. The emphasis is on dragonflies recorded in the UK. *The British Dragonfly Society aims to promote and encourage the study, conservation and understanding of dragonflies and their natural habitats, especially in the UK, and to raise public awareness of dragonflies. Dragonfly News is edited & designed by: Trustees & Officers of the BDS Mark Tyrrell, 8 Warwick Close, Raunds, Chairman: Pam Taylor, Decoy Farm, Decoy Road, Potter Northants., NN9 6JH Tel. Heigham, Norfolk, NR29 5LX. Tel. e-mail: Vice-Chairman: Vacant Deadlines for inclusion of copy: Secretary: Henry Curry, 23 Bowker Way, Whittlesey, Spring 31 January Peterborough, PE7 1PY. Tel. Autumn 31 July Treasurer: Brian Walker, 49 Roman Way, Wantage, Advertising Rates: Oxfordshire, OX12 9YF. Tel. £15 for small-ad (text only); £40 for quarter- Trustees: Andy Harmer, Alan Nelson, *Mick Parfitt. page; £60 for half-page; £100 for full-page. Journal Editor: Peter Mill, 8 Cookridge Grove, LEEDS, LS16 7LH. © British Dragonfly Society 2013 Shop Manager: Lynn Curry, 23 Bowker Way, Whittlesey, All rights reserved. No part of this publication may be Peterborough, PE7 1PY Tel. reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of the British Dragonfly Conservation Group (DCG) Dragonfly Society or the copyright owner. -
Pollination and Evolution of Plant and Insect Interaction JPP 2017; 6(3): 304-311 Received: 03-03-2017 Accepted: 04-04-2017 Showket a Dar, Gh
Journal of Pharmacognosy and Phytochemistry 2017; 6(3): 304-311 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Pollination and evolution of plant and insect interaction JPP 2017; 6(3): 304-311 Received: 03-03-2017 Accepted: 04-04-2017 Showket A Dar, Gh. I Hassan, Bilal A Padder, Ab R Wani and Sajad H Showket A Dar Parey Sher-e-Kashmir University of Agricultural Science and Technology, Shalimar, Jammu Abstract and Kashmir-India Flowers exploit insects to achieve pollination; at the same time insects exploit flowers for food. Insects and flowers are a partnership. Each insect group has evolved different sets of mouthparts to exploit the Gh. I Hassan food that flowers provide. From the insects' point of view collecting nectar or pollen is rather like fitting Sher-e-Kashmir University of a key into a lock; the mouthparts of each species can only exploit flowers of a certain size and shape. Agricultural Science and This is why, to support insect diversity in our gardens, we need to plant a diversity of suitable flowers. It Technology, Shalimar, Jammu is definitely not a case of 'one size fits all'. While some insects are generalists and can exploit a wide and Kashmir-India range of flowers, others are specialists and are quite particular in their needs. In flowering plants, pollen grains germinate to form pollen tubes that transport male gametes (sperm cells) to the egg cell in the Bilal A Padder embryo sac during sexual reproduction. Pollen tube biology is complex, presenting parallels with axon Sher-e-Kashmir University of guidance and moving cell systems in animals. -
Toward Understanding the Ecological Impact of Transportation Corridors
United States Department of Agriculture Toward Understanding Forest Service the Ecological Impact of Pacific Northwest Research Station Transportation Corridors General Technical Report PNW-GTR-846 Victoria J. Bennett, Winston P. Smith, and July 2011 Matthew G. Betts D E E P R A U R T LT MENT OF AGRICU The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Victoria J. -
Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2001 Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary Jerome A. Hogsette USDA-ARS Róbert Farkas Szent Istvan University Csaba Thuróczy Systematic Parasitoid Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Hogsette, Jerome A.; Farkas, Róbert; and Thuróczy, Csaba, "Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary" (2001). Publications from USDA-ARS / UNL Faculty. 991. https://digitalcommons.unl.edu/usdaarsfacpub/991 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BIOLOGICAL CONTROL Hymenopteran Pupal Parasitoids Recovered from House Fly and Stable Fly (Diptera: Muscidae) Pupae Collected on Livestock Facilities in Southern and Eastern Hungary 1 2 JEROME A. HOGSETTE, RO´ BERT FARKAS, AND CSABA THURO´ CZY Center for Medical, Agricultural and Veterinary Entomology, USDAÐARS, P.O. Box 14565, Gainesville, FL 32604 Environ. Entomol. 30(1): 107Ð111 (2001) ABSTRACT This Þeld survey, the second noting the occurrence and diversity of Þlth ßy pupal parasitoid fauna in Hungary, was performed on beef and dairy feedlots and swine facilities in the southern and eastern parts of the country. -
Ecological Considerations for Development of the Wildlife Lake, Castlereagh
Ecological considerations for development of the Wildlife Lake, Castlereagh Total Catchment Management Services Pty Ltd August 2009 Clarifying statement This report provides strategic guidance for the site. Importantly this is an informing document to help guide the restoration and development of the site and in that respect does not contain any matters for which approval is sought. Disclaimer The information contained in this document remains confidential as between Total Catchment Management Services Pty Ltd (the Consultant) and Penrith Lakes Development Corporation (the Client). To the maximum extent permitted by law, the Consultant will not be liable to the Client or any other person (whether under the law of contract, tort, statute or otherwise) for any loss, claim, demand, cost, expense or damage arising in any way out of or in connection with, or as a result of reliance by any person on: • the information contained in this document (or due to any inaccuracy, error or omission in such information); or • any other written or oral communication in respect of the historical or intended business dealings between the Consultant and the Client. Notwithstanding the above, the Consultant's maximum liability to the Client is limited to the aggregate amount of fees payable for services under the Terms and Conditions between the Consultant and the Client. Any information or advice provided in this document is provided having regard to the prevailing environmental conditions at the time of giving that information or advice. The relevance and accuracy of that information or advice may be materially affected by a change in the environmental conditions after the date that information or advice was provided. -
Pollination in Brazilian Syngonanthus (Eriocaulaceae) Species: Evidence for Entomophily Instead of Anemophily
Annals of Botany 96: 387–397, 2005 doi:10.1093/aob/mci191, available online at www.aob.oupjournals.org Pollination in Brazilian Syngonanthus (Eriocaulaceae) Species: Evidence for Entomophily Instead of Anemophily CARLIANNE O. C. RAMOS*, EDUARDO L. BORBA* and LI´GIA S. FUNCH Departamento de Cieˆncias Biolo´gicas, Laborato´rio de Taxonomia Vegetal, Universidade Estadual de Feira de Santana, Rodovia BR 116, km 03, Feira de Santana, BA, 44031-460, Brazil Received: 17 February 2005 Returned for revision: 1 April 2005 Accepted: 7 May 2005 Published electronically: 20 June 2005 Background and Aims The reproductive biology of Syngonanthus mucugensis and S. curralensis (Eriocaulaceae) was studied in areas of ‘campo rupestre’ vegetation in the Chapada Diamantina, north-eastern Brazil. These species are herbaceous and the individuals have a grouped distribution. Their leaves are united in a rosette, and their inflorescence is monoecious, of the capitulum type. The staminate and pistillate rings mature in a centripetal manner on the capitulum. Methods A field study was conducted, including observations concerning the morphology and biology of the flowers, fruit development, insect visits and anemophily, in both S. mucugensis and S. curralensis. Experimental pollinations were also carried out to study the mating systems of S. mucugensis. Key Results Both species flower from June to August. The staminate cycle lasts approx. 7 d, and the pistillate cycle from 3 to 4 d, with no temporal overlap between them on the same capitulum. The pollen viability of S. mucugensis was 88Á6 %, and 92Á5 % for S. curralensis. The inflorescences of both species demonstrated ultraviolet absorbance, and a sweet odour was detected during both the staminate and pistillate phases. -
Agents for Pollination by Durgeshwer Singh
AGENTS FOR POLLINATION Durgeshwer Singh Department of Botany Mahatma Gandhi Central University Agents for Pollination As the pollen is not capable of locomotion, pollination involves some agents for transfer of pollen grains especially in case of cross pollination. Cross Pollination Abiotic Agents Biotic Agents Entomophily Anemophily Ornithophily Hydrophily Cheiropteriphily Malacophily ABIOTIC AGENTS Anemophily (Pollination by air/ wind) Adaptation • Flowers- inconspicuous, usually not brightly coloured or scented • Petals are either small and green or absent • Male flowers are more numerous than female • Anther are versatile so that they swing freely by air currents • Pollen grains are smooth walled, relatively light, small and dry so they can be easily blown away by wind. • In grasses, pollen grains are relatively heavy and hence are not suitable for transport by wind. To overcome this problem, the male flowers are borne in the upper part of the inflorescence and the female in the lower part. • Examples; Most cereals and palms, Member of Salicaceae (Poplar, willow), Betulaceae (Alder, hazel, birch), Fagaceae (Oak, beech), Ulmaceae (Elm), Urticaceae (Urtica) etc. Hydrophily (Pollination by water) Hydrophilous flower are small and inconspicuous like anemophilous Hypo-hydrophily Epi-hydrophily • Pollination takes place completely under • Pollination of flower at the surface of water. water • More common • Example - Vallisneria • Pollination of flower below water level • Whole male flower break and float on the and is found in submerged plants like surface. Najas, Ceratophyllum and Zostera • Female flower are raised to the surface by • Aerenchyma present in anther- float a long spiral stalk. BIOTIC AGENTS Most important agent for pollination • Entomophily: pollination by Insects • Ornithophily: pollination by birds • Chiropteriphily: pollination by bats • Malacophily: pollination by slug and snail Entomophily (Pollination by insects) • Most frequent in Angiosperms. -
Online Dictionary of Invertebrate Zoology Parasitology, Harold W
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: P Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: P" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 9. https://digitalcommons.unl.edu/onlinedictinvertzoology/9 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 651 palaeartic region A zoogeographical region encompassing P Europe and northern Asia including Japan, the Middle and Near East and areas along the southern coast of the Medi- terranean Sea. palatal a. [L. palatum, palate] 1. Belonging to the outer lip. 2. P 1 In Mendel's laws, the first parental generation; parents of a (MOLL: Gastropoda) Referring to folds and lamellae of the given individual of the F 1 generation. shell. pachynema n. [Gr. pachys, thick; nema, thread] Thickened, palatal setae (ARTHRO: Insecta) In Culicidae, four small pe- paired chromosomes of meiosis prophase I, third stage; glike cibarial setae located on the anterior hard palate. -
Musca Domestica L.) Management in Poultry
The Pennsylvania State University The Graduate School Department of Entomology HOUSE FLY (MUSCA DOMESTICA L.) MANAGEMENT IN POULTRY PRODUCTION USING FUNGAL BIOPESTICIDES A Dissertation in Entomology by Naworaj Acharya 2015 Naworaj Acharya Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The dissertation of Naworaj Acharya was reviewed and approved* by the following: Matthew B. Thomas Professor and Huck Scholar in Ecological Entomology Dissertation Co-Adviser Co-Chair of Committee Edwin G. Rajotte Professor of Entomology Dissertation Co-Adviser Co-Chair of Committee Mary Barbercheck Professor of Entomology Nina E. Jenkins Senior Research Associate Paul Patterson Professor of Poultry Science Gary Felton Professor of Entomology Head of the Department of Entomology *Signatures are on file in the Graduate School iii ABSTRACT House flies, Musca domestica L., are economically and medically important insect pests in poultry production facilities. Standard, chemical pesticide-based control options for flies are becoming increasingly difficult due to insecticide resistance and regulatory constraints. Biopesticides based on naturally occurring fungal pathogens could provide an alternative tool for integrated pest management (IPM) in poultry production. Here we addressed several issues related to field application, persistence and performance of fungal biopesticides against flies. We demonstrated that residual spray treatments of fungal biopesticides, Beauveria bassiana and Metarhizium anisopliae could sustainably suppress fly populations through lethal and sub-lethal impacts on reproductive output. The study developed a cost-effective field delivery system whereby teneral adult flies are targeted via the application of oil-formulated spores to the lower portions of basement walls where flies momentarily rest to harden themselves following emergence. -
8 Ecological Impact
Planning Department and Agreement No. CE 35/2012 (CE) Civil Engineering and Development Department Planning and Engineering Study for Housing Sites in Yuen Long South – Investigation Environmental Impact Assessment Report 8 Ecological Impact 8.1 Legislation, Standards and Guidelines 8.1.1 Local Legislation, Standards and Guidelines 8.1.1.1 The relevant legislation and associated guidelines applicable to the present study for the assessment of ecological impacts include: Forests and Countryside Ordinance (Cap. 96) and its subsidiary legislation, the Forestry Regulations; Wild Animals Protection Ordinance (Cap. 170); Environmental Impact Assessment Ordinance (Cap. 499) and relevant annexes 8, 11, 16, 20 and 21 of the associated Technical Memorandum; EIA Study Brief No. ESB-246/2012 Protection of Endangered Species of Animals and Plants Ordinance (Cap. 586) and its subsidiary legislation; Hong Kong Planning Standards and Guidelines (HKPSG) Chapter 10, “Conservation”; Planning, Environmental & Lands Branch Technical Circular No. 1/97, Works Branch Technical Circular No. 4/97, “Guidelines for Implementing the Policy of Off-site Ecological Mitigation Measures”; EIAO Guidance Note No. 6/2010 – Some Observations on Ecological Assessment from the Environmental Impact Assessment Ordinance Perspectives; EIAO Guidance Note No. 7/2010 – Ecological Baseline Survey for Ecological Assessment; EIAO Guidance Note No. 10/2010 – Methodologies for Terrestrial and Freshwater Ecological Baseline Survey 8.1.2 International Conventions and Guidelines 8.1.2.1 International conventions and guidelines potentially relevant to the assessment include: Convention on International Trade in Endangered Species of Wild Fauna and Flora (“CITES”). This Convention was first signed in 1973 and entered into force in 1975 to regulate the import and export of endangered species through a permit system. -
Biodiversity Summary: Cape York, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Rangelands, Western Australia
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.