Oikos 122: 1554–1564, 2013 doi: 10.1111/j.1600-0706.2013.00527.x © 2013 Th e Authors. Oikos © 2013 Nordic Society Oikos Subject Editor: Dries Bonte. Accepted 10 April 2013 Predicting novel herbivore – plant interactions Ian S. Pearse , David J. Harris , Richard Karban and Andrew Sih I. S. Pearse (
[email protected]), Cornell Lab of Ornithology, 159 Sapsucker Woods, Ithaca, NY 14850, USA. – D. J. Harris, R. Karban and A. Sih, Center for Population Biology, Univ. of California - Davis, 1 Shields Ave, Davis, CA 95616, USA. ISP and RK also at: Dept of Entomology, Univ. of California - Davis, 1 Shields Ave., Davis, CA 95616, USA. ISP, DJH and AS also at: Dept of Environmental Science and Policy, Univ. of California - Davis, 1 Shields Ave., Davis, CA 95616, USA. As human-aided range expansions and climate change alter the distributions of plants and their herbivores, predicting and addressing novel species interactions will become increasingly pressing for community ecologists. In this context, a key, sur- prisingly understudied question is: when an exotic plant is introduced, which herbivores will adopt this new potential host? Whether the plant is a weed, an ornamental, or a crop, the development versus non-development of a novel plant – insect interaction can have profound eff ects for both economic and conservation applications. In this paper, we sketch mecha- nistic and statistical frameworks for predicting these interactions, based on how plant and herbivore traits as well as shared evolutionary history can infl uence detection, recognition, and digestion of novel plants. By emphasizing mechanisms at each of these steps, we hope to clarify diff erent aspects of novel interactions and why they may or may not occur.