Habitat Preferences and Fitness Consequences for Fauna Associated with Novel Marine Environments

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Preferences and Fitness Consequences for Fauna Associated with Novel Marine Environments Habitat preferences and fitness consequences for fauna associated with novel marine environments Luke T Barrett orcid.org/0000-0002-2820-0421 Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2018 School of BioSciences University of Melbourne ABSTRACT The rapidly expanding reach of anthropogenic environmental change means that animals must now navigate landscapes comprised largely of modified and degraded habitats. Individuals that correctly perceive habitat quality will be best placed to survive and reproduce in novel environments, but where environmental change outpaces the evolution of behavioural responses, mismatches can arise between cues and the underlying value of habitats. These mismatches can lead individuals to select habitats that offer relatively poor fitness outcomes, creating ecological traps. In environments where ecological traps are likely to occur, data on habitat preferences and fitness consequences can fundamentally change predictions of metapopulation models and increase our understanding of the role that novel habitats play in population persistence, but such data are rarely collected. In this thesis, I first conduct a global meta-analysis to assess the state of knowledge on habitat preference and fitness metrics in animal populations, using wildlife populations associated with aquaculture as a case study. My findings reveal that responses to aquaculture vary widely across taxa and farming systems, ranging from large increases in abundance to near complete displacement. However, the influence of aquaculture on wildlife populations remains poorly understood, as researchers rarely obtain appropriate measures of habitat preference, survival or reproductive success. Accordingly, in subsequent chapters I apply the ecological trap framework to assess marine habitats modified by aquaculture or invasive species. In the first application, I collect wild Atlantic cod (a species known to be attracted to salmon farms) from areas of high and low salmon farming intensity, and compare reproductive fitness via a captive spawning trial with hatchery-rearing of offspring. I found limited negative effects of high farming intensity on quality of offspring. In the second application, I show that the threat of predation by a native keystone predator may limit the ability of an invasive seastar to exploit a food-rich habitat at shellfish farms. In the third application, I show that an invasive canopy-forming marine macroalga provides viable habitat for native fishes and may help to maintain fish biodiversity in areas where urban impacts have driven a decline in native macroalgal canopy cover. Together, this thesis demonstrates the utility of individual-level data on habitat preference and fitness outcomes— via the application of the ecological trap conceptual framework—in assessing the impacts of novel habitats on animals, and recommends greater use of this approach in future investigations into the impacts of human-induced rapid environmental change in coastal marine ecosystems. i DECLARATION This is to certify that: The thesis comprises only my original work towards the PhD except where indicated in the Preface. Due acknowledgement has been made in the text to all other material used. The thesis is fewer than 100 000 words in length, exclusive of tables, maps, bibliographies and appendices. Luke Barrett September 2018 Cover image: Mesocosm reef stocked with invasive wakame kelp (Undaria pinnatifida) ii PREFACE I am the primary author and principle contributor on all chapters presented in this thesis. My supervisors, Stephen E Swearer and Tim Dempster, are co-authors on all chapters. Article publication status and author contributions Chapter Two: Published by Reviews in Aquaculture on 14 Aug 2018. Co-authored by Tim Dempster and Stephen E Swearer. LTB, TD and SES conceived and designed the experiment; LTB conducted the experiment and collected data with assistance from technical staff and volunteers; LTB analysed the data and wrote the manuscript; TD and SES provided editorial comments. Contributions: LTB 80 %, TD 10 %, SES 10 % Chapter Three: Published by Aquaculture Environment Interactions on 16 Aug 2018. Co- authored by Tim Dempster, Stephen E Swearer, Ørjan Karlsen, Torstein Harboe and Sonnich Meier. LTB, TD, SES, ØK and TH conceived and designed the experiment; LTB conducted the experiment and collected data with assistance from ØK, TH and SM, as well as technical staff at the Norwegian Institute of Marine Research; LTB analysed the data and wrote the manuscript; TD, SES and SM provided editorial comments. Contributions: LTB 75 %, TD 5 %, SES 5 %, ØK 5 %, TH 5 %, SM 5 % Chapter Four: Unpublished material not submitted for publication. Co-authored by Tim Dempster and Stephen E Swearer. LTB, TD and SES conceived and designed the experiment; LTB conducted the experiment and collected data with assistance from technical staff and volunteers; LTB analysed the data and wrote the manuscript; TD and SES provided editorial comments. Contributions: LTB 80 %, TD 10 %, SES 10 % Chapter Five: Unpublished material not submitted for publication. Co-authored by Stephen E Swearer, Tim Dempster. LTB, SES and TD conceived and designed the experiment; LTB conducted the experiment and collected data with assistance from technical staff and volunteers; LTB analysed the data and wrote the manuscript; SES and TD provided editorial comments. Contributions: LTB 80 %, SES 10 %, TD 10 % iii This research was funded by grants from the Holsworth Wildlife Research Endowment (Chapters Four and Five), the PADI Foundation (Chapter Five), the Victorian Environmental Assessment Council (Chapter Five), the Sustainable Aquaculture Lab – Temperate and Tropical (all chapters), the Research on the Ecology and Evolution (REEF) Lab (all chapters), and the Norwegian Seafood Research Fund (Chapter Three). All animal research was conducted in accordance with the animal ethics requirements of the University of Melbourne (Chapter Five: approval numbers 1413133 and 1413193) and Norwegian legislation on animal experimentation (Chapter Three: approval number 8264). Permits were obtained from the Victorian state government for collection and translocation of marine animals and algae for (Chapters Four and Five: RP919, RP1185, NP280, NP282). iv ACKNOWLEDGMENTS I would firstly like to thank my supervisors, Steve Swearer and Tim Dempster, for their unwavering support over the duration of my PhD. They have been everything I could have hoped for in a pair of supervisors. My friends and colleagues in the REEF and SALTT labs, past and present, provided helpful discussions and comments on my thesis chapters, and were universally great company to have a coffee or beer with, as were all my officemates in 131 and others around BioSciences 4. Special mentions go to Simon, Emily, Ben, Fran, Qike, Valeriya, Tyler, Matt, James, Jack, Ollie and Fletch for making me feel welcome in my first couple of years in Melbourne. Many people combined forces with me to get fieldwork done on the cold and murky waters of Port Phillip Bay. In alphabetical order: Dean Chamberlain, Seann Chia, Ben Cleveland, Emily Fobert, Molly Fredle, Akiva Gebler, Kevin Jensen, Valeriya Komyakova, Nina Kriegisch, Kevin Menzies, Rebecca Morris, Jack O’Connor, Simon Reeves, Juan Manuel Valero Rodriguez, Kyler Tan, Chris Taylor, João Teixiera, Oliver Thomas and Rod Watson (Victorian Marine Science Consortium). Apologies if I forgot anyone! Lance Wiffen provided access to his aquaculture leases at Clifton Springs and Grassy Point. John Ahern and Tania Long averted a couple of aquarium-related catastrophes in my absence, thanks and sorry! Thanks to my Norwegian collaborators and surrogate supervisors during my time there: Torstein Harboe, Ørjan Karlsen and Sonnich Meier. The work was made possible by numerous technical staff, researchers, expert cod fishermen and all-round nice people. I’d especially like to thank Margareth Møgster, Stig Ove Utskot, Theresa Aase, Michal Rejmer, Inger Semb Johansen, Nele Gunkel-Sauer, Kristine Hovland Holm, Yvonne Rong, Terje van der Meeren, Tord Skår, Velimir Nola and Glenn Sandtorv. I’d also like to thank the staff and students at Austevoll High School for taking us to Brandasund and back with a boatload of live cod. My family and friends back home in WA tolerated my long absence and my incommunicativeness during the busy times, and largely stayed away from the question “when will you be finished?”. Well played! Finally, but most importantly, I’d like to thank my partner Marina, who provided constant love and support, and made quite a few sacrifices to ensure that I had a clear run at this thesis. I hope it’s been worth it! v CONTENTS List of Tables ....................................................................................................................... ix List of Figures ....................................................................................................................... x Chapter One | General introduction General introduction ........................................................................................................... 1 References .......................................................................................................................... 9 Chapter Two | Impacts of marine and freshwater aquaculture on wildlife: a global meta- analysis Abstract ............................................................................................................................. 14
Recommended publications
  • Fish-Passage Facilities As Ecological Traps in Large Neotropical Rivers
    Contributed Paper Fish-Passage Facilities as Ecological Traps in Large Neotropical Rivers FERNANDO MAYER PELICICE∗‡ AND ANGELO ANTONIO AGOSTINHO† ∗Graduate Course in Ecology of Inland Aquatic Ecosystems, Maring´a State University, Maring´a, Paran´a, Brazil †Department of Biology/NUPELIA, Maring´a State University, Maring´a, Paran´a, Brazil Abstract: At present most of the large rivers of South America are impounded. Management plans historically have relied on the construction of fish passages, specifically ladders, to mitigate the impact of these waterway blockages on fisheries and biodiversity. Nevertheless, the design of these facilities is not ecologically sound and they are not monitored continually. Consequently, the real role of South American fish passages in fisheries and biodiversity management is unclear and the results of some studies suggest that ladders are problematic in fish conservation. We examined the characteristics and negative aspects of fish passages within a larger context and considered the notion that these facilities are ecological traps in some Brazilian impoundments. Four conditions are required to characterize a fish passage as an ecological trap: (1) attractive forces leading fish to ascend the passage; (2) unidirectional migratory movements (upstream); (3) the environment above the passage has poor conditions for fish recruitment (e.g., the absence of spawning grounds and nursery areas); and (4) the environment below the passage has a proper structure for recruitment. When these conditions exist individuals move to poor-quality habitats, fitness is reduced, and populations are threatened. To exemplify this situation we analyzed two case studies in the upper Parana´ River basin, Brazil, in which the four conditions were met and migratory fish populations were declining.
    [Show full text]
  • Determination of Tucson, Arizona As an Ecological Trap for Cooper's Hawks
    Determination of Tucson, Arizona as an Ecological Trap for Cooper's Hawks (Accipiter cooperii) Jouie Ames1, Andrea Feiler2, Giancarlo Mendoza3, Adam Rumpf2, Stephen Wirkus2 1University of California, Santa Cruz, 2Arizona State University, 3Universidad Metropolitana P.R. August 2011 Abstract The term \ecological trap" has been used to describe a habitat in which its attrac- tiveness has been disassociated with its level of suitability. To date, fewer than ten clearly delineated examples of them have been found; they are either rare in nature, hard to detect, or a combination of both. It has been hypothesized that the city of Tucson, Arizona is an ecological trap for Cooper's Hawks (Accipiter cooperii) due to the abundance of prey species, namely columbids, which make up over 80% of the hawk's diet. Overall, more than 40% of these columbid populations are carriers of the protozoan Trichomonas gallinae, which directly contributes to a nestling mortal- ity rate of more than 50% in the hawks. Using an epidemiological framework, we create two SIR-type models, one stochastic and one deterministic, utilizing parame- ter estimates from more than ten years of data from the dove (columbid) and hawk populations in the city. Through mathematical modeling and bifurcation theory, we found that the proportion of infected columbids, does not have an effect on classifying Tucson as an ecological trap for Cooper's Hawks, but by increasing the disease death rate, it can be considered an ecological trap. 1 1 Introduction When the term \ecological trap" was first coined in 1972 by Dwernychuk and Boag [1], it was originally used to describe a natural trap in ones habitat but now is used almost exclusively to refer to anthropogenically induced traps [1,2].
    [Show full text]
  • Toward Understanding the Ecological Impact of Transportation Corridors
    United States Department of Agriculture Toward Understanding Forest Service the Ecological Impact of Pacific Northwest Research Station Transportation Corridors General Technical Report PNW-GTR-846 Victoria J. Bennett, Winston P. Smith, and July 2011 Matthew G. Betts D E E P R A U R T LT MENT OF AGRICU The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Victoria J.
    [Show full text]
  • Response of Endangered Mt. Graham Red Squirrels to Severe Insect Infestation
    Trailblazers in the Forest: Response of Endangered Mt. Graham Red Squirrels to Severe Insect Infestation Item Type text; Electronic Thesis Authors Zugmeyer, Claire Ann Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 14:33:31 Link to Item http://hdl.handle.net/10150/193336 TRAILBLAZERS IN THE FOREST: RESPONSE OF ENDANGERED MT. GRAHAM RED SQUIRRELS TO SEVERE INSECT INFESTATION by Claire Ann Zugmeyer ________________________ A Thesis Submitted to the faculty of the SCHOOL OF NATURAL RESOURCES In Partial fulfillment of the Requirements For the Degree of MASTERS OF SCIENCE WITH A MAJOR IN WILDLIFE AND FISHERIES SCIENCES In the Graduate College THE UNIVERSITY OF ARIZONA 2007 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Predicting Novel Herbivore – Plant Interactions
    Oikos 122: 1554–1564, 2013 doi: 10.1111/j.1600-0706.2013.00527.x © 2013 Th e Authors. Oikos © 2013 Nordic Society Oikos Subject Editor: Dries Bonte. Accepted 10 April 2013 Predicting novel herbivore – plant interactions Ian S. Pearse , David J. Harris , Richard Karban and Andrew Sih I. S. Pearse ([email protected]), Cornell Lab of Ornithology, 159 Sapsucker Woods, Ithaca, NY 14850, USA. – D. J. Harris, R. Karban and A. Sih, Center for Population Biology, Univ. of California - Davis, 1 Shields Ave, Davis, CA 95616, USA. ISP and RK also at: Dept of Entomology, Univ. of California - Davis, 1 Shields Ave., Davis, CA 95616, USA. ISP, DJH and AS also at: Dept of Environmental Science and Policy, Univ. of California - Davis, 1 Shields Ave., Davis, CA 95616, USA. As human-aided range expansions and climate change alter the distributions of plants and their herbivores, predicting and addressing novel species interactions will become increasingly pressing for community ecologists. In this context, a key, sur- prisingly understudied question is: when an exotic plant is introduced, which herbivores will adopt this new potential host? Whether the plant is a weed, an ornamental, or a crop, the development versus non-development of a novel plant – insect interaction can have profound eff ects for both economic and conservation applications. In this paper, we sketch mecha- nistic and statistical frameworks for predicting these interactions, based on how plant and herbivore traits as well as shared evolutionary history can infl uence detection, recognition, and digestion of novel plants. By emphasizing mechanisms at each of these steps, we hope to clarify diff erent aspects of novel interactions and why they may or may not occur.
    [Show full text]
  • High Road Mortality During Female-Biased Larval Dispersal in an Iconic Beetle
    Behavioral Ecology and Sociobiology (2021) 75: 26 https://doi.org/10.1007/s00265-020-02962-6 ORIGINAL ARTICLE High road mortality during female-biased larval dispersal in an iconic beetle Topi K. Lehtonen1,2,3 & Natarsha L. Babic2,4 & Timo Piepponen1,2 & Otso Valkeeniemi1,2 & Anna-Maria Borshagovski1,2 & Arja Kaitala1,2 Received: 23 October 2020 /Revised: 10 December 2020 /Accepted: 28 December 2020 / Published online: 16 January 2021 # The Author(s) 2021 Abstract Animals often disperse from one habitat to another to access mates or suitable breeding sites. The costs and benefits of such movements depend, in part, on the dispersing individuals’ phenotypes, including their sex and age. Here we investigated dispersal and road-related mortality in larvae of a bioluminescent beetle, the European common glow-worm, Lampyris noctiluca, in relation to habitat, sex and proximity of pupation. We expected these variables to be relevant to larval dispersal because adult females are wingless, whereas adult males fly when searching for glowing females. We found that dispersing glow-worm larvae were almost exclusively females and close to pupation. The larvae were often found on a road, where they were able to move at relatively high speeds, with a tendency to uphill orientation. However, each passing vehicle caused a high mortality risk, and we found large numbers of larvae run over by cars, especially close to covered, forest-like habitat patches. In contrast, adult females in the same area were most often found glowing in more open rocky and grassy habitats. These findings demonstrate an underappreciated ecological strategy, sex-biased dispersal at larval phase, motivated by different habitat needs of larvae and wingless adult females.
    [Show full text]
  • Translation of the Ecological Trap Concept to Glioma Therapy: the Cancer Cell Trap Concept
    Translation of the ecological trap concept to glioma therapy: the cancer cell trap concept. Boudewijn van der Sanden, Florence Appaix, François Berger, Laurent Selek, Jean-Paul Issartel, Didier Wion To cite this version: Boudewijn van der Sanden, Florence Appaix, François Berger, Laurent Selek, Jean-Paul Issartel, et al.. Translation of the ecological trap concept to glioma therapy: the cancer cell trap concept.: The cancer cell trap concept. Future Oncology, Future Medicine, 2013, 9 (6), pp.817-24. 10.2217/fon.13.30. inserm-00851156 HAL Id: inserm-00851156 https://www.hal.inserm.fr/inserm-00851156 Submitted on 4 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Perspective Translation of the ecological trap concept to glioma therapy: The cancer cell trap concept. Boudewijn van der Sanden*Δ, Florence Appaix*, François Berger*Δ, Laurent Selek*, Jean-Paul Issartel* and Didier Wion*Ω. *INSERM U836, Grenoble Institut des Neurosciences, Université Joseph Fourier, CHU Michallon, Grenoble, France ; ΔCLINATEC, Centre de Recherche Edmond J. Safra, MINATEC Campus, CEA, Grenoble, France. Ω corresponding author : [email protected] running title: The cancer cell trap concept. 1 Abstract: Viewing tumors as ecosystems offers the opportunity to consider how ecological concepts can be translated to novel therapeutic perspectives.
    [Show full text]
  • Is the Blue Tit Falling Into an Ecological Trap in Argentine Ant Invaded Forests?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Is the blue tit falling into an ecological trap in Argentine ant invaded forests? David Estany-Tigerstro¨m • Josep Maria Bas • Miguel Clavero • Pere Pons Abstract Because insectivorous birds must evaluate figures suggest an increased level of nutritional stress in resources for reproduction before settling into a breed- blue tits breeding in invaded forests, the data analyses ing habitat, they can fall into an ecological trap if showed no significant alterations in terms of productiv- informative cues about habitat suitability become ity or offspring fitness. The reproductive performance of dissociated from their actual yield. Given their potential the blue tit has been shown to be remarkably resilient to to affect ecological networks, invasive ant species are the Argentine ant-mediated food shortage, either potential candidates for triggering such ecological traps. because the prey reduction following the invasion did We combined observational and experimental not reach a critical threshold or because of compensa- approaches to examine whether the variation in food tory activity by the progenitors. We cannot conclusively supply for nestlings resulting from the invasion of the reject an ecological trap triggered by the ant invasion on Argentine ant, Linepithema humile, had any influence blue tits, since neither fledgling recruitment nor the on the breeding ecology of the blue tit, Cyanistes prospective survival of parents were assessed. Even caeruleus, an insectivorous foliage-gleaner. We inves- though we could not confirm short-term consequences tigated the effects of the ant invasion on breeding of the Argentine ant invasion on blue tit reproductive performance (nesting success, clutch size, brood size fitness, the long-term bottom-up effects of the invasion and breeding success) and offspring quality (body size remain unknown and should not be ruled out.
    [Show full text]
  • Ecological Traps in Changing Environments: Ecological and Evolutionary Consequences of a Behaviourally Mediated Allee Effect
    Evolutionary Ecology Research, 2001, 3: 537–551 Ecological traps in changing environments: Ecological and evolutionary consequences of a behaviourally mediated Allee effect Hanna Kokko1* and William J. Sutherland2 1Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ and 2School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK ABSTRACT Species usually have to use indirect cues when assessing habitat quality. This means that it is possible for humans to alter habitats in a way that causes a discrepancy between the cues and the true quality of different habitats. This phenomenon is called an ‘ecological trap’. Here we show that the trap may lead to a behaviourally mediated Allee effect, where population growth is reduced because of non-ideal choices of individuals. The reduction is greatest at low densities because more individuals can choose their preferred habitat when competition for breeding sites is reduced. An ecological trap may lead to multiple equilibria in population dynamics and cause deterministic extinction in habitats that are capable of sustaining a viable population. We also study the efficiency of three mechanisms that may rescue a population from this extinction trap: natural selection acting on habitat preferences and two forms of phenotypic plasticity, experience-based learning and a philopatric preference for the natal habitat. Selection is most efficient in short-lived species with large heritable variation in habitat preferences, whereas in long-lived species, plastic traits outperform genetically determined preferences. The simple philopatric strategy generally produces the most favourable outcome. It hardly differs from the optimal strategy that assumes perfect and immediate knowledge of habitat change, and is very robust to non-ideal variation in the strength of habitat preferences.
    [Show full text]
  • Testing the Ecological Trap Hypothesis for African Wild Dogs (Lycaon Pictus) in and Around Hwange National Park Ester Van Der Meer
    Is the grass greener on the other side? : testing the ecological trap hypothesis for African wild dogs (Lycaon pictus) in and around Hwange National Park Ester van der Meer To cite this version: Ester van der Meer. Is the grass greener on the other side? : testing the ecological trap hypothesis for African wild dogs (Lycaon pictus) in and around Hwange National Park. Agricultural sciences. Université Claude Bernard - Lyon I, 2011. English. NNT : 2011LYO10095. tel-00839251 HAL Id: tel-00839251 https://tel.archives-ouvertes.fr/tel-00839251 Submitted on 27 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A thesis submitted to the University of Lyon (Université Claude Bernard Lyon I) for the degree Doctor of Philosophy Is the grass greener on the other side? Testing the ecological trap hypothesis for African wild dogs (Lycaon pictus) in and around Hwange National Park Presented on the 27th of May 2011 by Ester van der Meer Jury: Prof. Dominique Pontier (Examiner, President of the jury) Dr. Hervé Fritz (Director of the thesis) Prof. Carmen Bessa-Gomes (Reviewer) Prof. Claudio Sillero-Zubiri (Reviewer) Prof. Rob Slotow (Reviewer) Prof.
    [Show full text]
  • Dynamic Distributions of Coastal Zooplanktivorous Fishes
    Dynamic distributions of coastal zooplanktivorous fishes Matthew Michael Holland A thesis submitted in fulfilment of the requirements for a degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science University of New South Wales, Australia November 2020 4/20/2021 GRIS Welcome to the Research Alumni Portal, Matthew Holland! You will be able to download the finalised version of all thesis submissions that were processed in GRIS here. Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis that you submit to the Library. Information on how to submit the final copies of your thesis to the Library is available in the completion email sent to you by the GRS. Thesis submission for the degree of Doctor of Philosophy Thesis Title and Abstract Declarations Inclusion of Publications Statement Corrected Thesis and Responses Thesis Title Dynamic distributions of coastal zooplanktivorous fishes Thesis Abstract Zooplanktivorous fishes are an essential trophic link transferring planktonic production to coastal ecosystems. Reef-associated or pelagic, their fast growth and high abundance are also crucial to supporting fisheries. I examined environmental drivers of their distribution across three levels of scale. Analysis of a decade of citizen science data off eastern Australia revealed that the proportion of community biomass for zooplanktivorous fishes peaked around the transition from sub-tropical to temperate latitudes, while the proportion of herbivores declined. This transition was attributed to high sub-tropical benthic productivity and low temperate planktonic productivity in winter.
    [Show full text]
  • Swan Canning Estuary Condition Assessment Based on Fish Communities - 2020
    Swan Canning Estuary condition assessment based on fish communities - 2020 James Tweedley, Kurt Krispyn & Chris Hallett Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University College of Science, Health, Engineering & Education, Murdoch University Final Report Prepared for the Department of Biodiversity, Conservation and Attractions Fish Community Index: Condition of the Swan Canning Estuary 2020 Disclaimer The authors have prepared this report in accordance with the scope of work and for the purpose required by the Department of Biodiversity, Conservation and Attractions. The methodology adopted and sources of information used by the author are outlined in this report. The authors have made no independent verification of this information beyond the agreed scope of works and assumes no responsibility for any inaccuracies or omissions. This report was prepared during January 2021, based on the information reviewed at the time of preparation. The authors disclaim any responsibility for changes that may have occurred after this time. This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners. Acknowledgements Gratitude is expressed to colleagues in the Centre for Sustainable Aquatic Ecosystems (formerly the Centre for Fish and Fisheries Research) at Murdoch University who assisted with the sampling and analysis of the fish community, especially Charles Maus, Dr Alan Cottingham and Brian Poh. The Department of Biodiversity, Conservation and Attractions are thanked for providing the water quality plots and unpublished phytoplankton data for the Swan Canning Estuary.
    [Show full text]