Pleasant Looking, Easily Readable Text Has Been the Aim of Typographers Since Scribes Began to Write and Gutenberg Perfected Printing with Movable Type
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Experience Design to Drive Institutional Change, by Matt Glendinning
The Monthly Recharge - November 2014, Experience Design Designing Learning for School Leaders, by Carla Silver Using Experience Design to Drive Institutional Change, by Matt Glendinning Designing the Future, by Brett Jacobsen About L+D Designing Learning for School Leadership+Design is a nonprofit Leaders organization and educational Carla Robbins Silver, Executive Director collaborative dedicated to creating a new culture of school leaders - empathetic, creative, collaborative Dear Friends AND Designers: and adaptable solution-makers who can make a positive difference in a The design industry is vast and wonderful. In his book, Design: rapidly changing world. Creation of Artifacts in Society, Karl Ulrich, professor at Wharton School of Business at the University of Pennsylvania, includes an We support creative and ever-growing list of careers and opportunities in design. They innovative school leadership at range form the more traditional and known careers - architecture the individual and design, product design, fashion design, interior design - to organizational level. possibilities that might surprise you - game design, food design, We serve school leaders at all news design, lighting and sound design, information design and points in their careers - from experience design. Whenever I read this list, I get excited - like teacher leaders to heads of jump-out-of-my-seat excited. I think about the children in all of our school as well as student schools solving complex problems, and I think about my own leaders. children, and imagine them pursuing these careers as designers. We help schools design strategies for change, growth, Design is, according to Ulrich, "conceiving and giving form to and innovation. -
Supreme Court of the State of New York Appellate Division: Second Judicial Department
Supreme Court of the State of New York Appellate Division: Second Judicial Department A GLOSSARY OF TERMS FOR FORMATTING COMPUTER-GENERATED BRIEFS, WITH EXAMPLES The rules concerning the formatting of briefs are contained in CPLR 5529 and in § 1250.8 of the Practice Rules of the Appellate Division. Those rules cover technical matters and therefore use certain technical terms which may be unfamiliar to attorneys and litigants. The following glossary is offered as an aid to the understanding of the rules. Typeface: A typeface is a complete set of characters of a particular and consistent design for the composition of text, and is also called a font. Typefaces often come in sets which usually include a bold and an italic version in addition to the basic design. Proportionally Spaced Typeface: Proportionally spaced type is designed so that the amount of horizontal space each letter occupies on a line of text is proportional to the design of each letter, the letter i, for example, being narrower than the letter w. More text of the same type size fits on a horizontal line of proportionally spaced type than a horizontal line of the same length of monospaced type. This sentence is set in Times New Roman, which is a proportionally spaced typeface. Monospaced Typeface: In a monospaced typeface, each letter occupies the same amount of space on a horizontal line of text. This sentence is set in Courier, which is a monospaced typeface. Point Size: A point is a unit of measurement used by printers equal to approximately 1/72 of an inch. -
Unicode Nearly Plain-Text Encoding of Mathematics Murray Sargent III Office Authoring Services, Microsoft Corporation 4-Apr-06
Unicode Nearly Plain Text Encoding of Mathematics Unicode Nearly Plain-Text Encoding of Mathematics Murray Sargent III Office Authoring Services, Microsoft Corporation 4-Apr-06 1. Introduction ............................................................................................................ 2 2. Encoding Simple Math Expressions ...................................................................... 3 2.1 Fractions .......................................................................................................... 4 2.2 Subscripts and Superscripts........................................................................... 6 2.3 Use of the Blank (Space) Character ............................................................... 7 3. Encoding Other Math Expressions ........................................................................ 8 3.1 Delimiters ........................................................................................................ 8 3.2 Literal Operators ........................................................................................... 10 3.3 Prescripts and Above/Below Scripts........................................................... 11 3.4 n-ary Operators ............................................................................................. 11 3.5 Mathematical Functions ............................................................................... 12 3.6 Square Roots and Radicals ........................................................................... 13 3.7 Enclosures..................................................................................................... -
Desktop + Mobile Style Guide 06.22.15
DESKTOP + MOBILE STYLE GUIDE 06.22.15 SITE BASICS PRIMARY TYPEFACE PRIMARY COLORS SECONDARY COLORS Helvetica, Arial, sans-serif R0 G70 B127 R0 G24 B46 HEX# 00467F HEX# 00182E R255 G201 B57 R47 G107 B189 HEX# FFC939 HEX# 2F6BBD R77 G79 B83 HEX# 4D4F53 R0 G0 B0 HEX# 000000 2 UNIVERSAL ELEMENTS PRIMARY BUTTONS LINKS CARETS IDLE ROLLOVER IDLE ROLLOVER ON CLEAN BACKGROUND PRIMARY NAVIGATION ON BUSY BACKGROUND IDLE ROLLOVER 3 HEADINGS AND LISTS A Font Family Helvetica, Arial, sans-serif B Font Family Helvetica, Arial, sans-serif Font Size 40px/48px Font Size 30px A Font Weight Bold Color #ffffff Color #000000 B C C Font Family Helvetica, Arial, sans-serif D Font Family Helvetica, Arial, sans-serif Font Weight Bold Font Size 24px/34px D Font Size 24px/34px Color #000000 Color #2F6BBD E E Font Family Helvetica, Arial, sans-serif F Font Family Helvetica, Arial, sans-serif Font Size 24px/34px Font Size 24px/34px F Color #000000 Color #000000 Margin-bottom 34px Margin-bottom 17px G Font Family Helvetica, Arial, sans-serif Font Size 24px/34px Color #000000 Margin-bottom 17px G 4 DESKTOP TYPOGRAPHY B A A Font Family Helvetica, Arial, sans-serif B Font Family Helvetica, Arial, sans-serif C Font Size 16px Font Size 16px Font Weight Bold Color #ffffff Color #cccccc Hover Underline Hover Underline C Font Family Helvetica, Arial, sans-serif D Font Family Helvetica, Arial, sans-serif Font Weight Bold Font Size 24px/30px D Font Size 22px/24px Color #000000 E Color #ffffff F E Font Family Helvetica, Arial, sans-serif F Font Family Helvetica, Arial, sans-serif -
Introducing Opentype Ab
UBS AG ab Postfach CH-8098 Zürich Tel. +41-44-234 11 11 Brand Management Visual Identity Stephanie Teige FG09 G5R4-Z8S Tel. +41-1-234 59 09 Introducing OpenType Fax +41-1-234 36 41 [email protected] July 2005 www.ubs.com OpenType is a new font format developed collaboratively by Adobe and Microsoft. OpenType enhances the TrueType and PostScript technologies and extends their capabilities. Most fonts today are released in the OpenType format, now considered the industry standard. The resulting new generation of UBSHeadline and Frutiger fonts offers improved typographic and layout features. 1. What is OpenType? Frutiger is not always Frutiger Due to the wide variety of Frutiger styles available world- A single font format wide, be sure to install and use only the client-specific UBS OpenType provides a single universally acceptable font licensed version of this font. Do not use any other versions format that can be used on any major operating system of Frutiger to create UBS media. and in any application. Using the client-specific UBS Frutiger guarantees access to Macintosh Windows UBS-relevant cuts. It also prevents changes to kerning and line-break in comparison to random Frutiger styles. UBSHeadline, Frutiger UBSHeadline, Frutiger (PostScript) (TrueType) Linotype Frutiger UBS Frutiger Frutiger LT 45 Light Frutiger 45 Light Macintosh and Frutiger LT 46 Light Italic Frutiger 45 Light Italic Windows Frutiger LT 55 Roman Frutiger 55 Roman Frutiger LT 56 Italic Frutiger 55 Roman Italic UBSHeadline, Frutiger Frutiger LT 65 Bold Frutiger 45 Light Bold (OpenType) Frutiger LT 75 Black Frutiger 55 Roman Bold Frutiger LT 47 Light Condensed Frutiger 47 Light CN Unicode OpenType supports Unicode, which allows much larger Comparison of common Linotype Frutiger versus UBS client- character sets – more than 65,000 glyphs per font in many specific Frutiger. -
Making Connections: Typography, Layout and Language
From: AAAI Technical Report FS-99-04. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. Making connections: typography, layout and language Robert Waller Information Design Unit & Coventry University [email protected] Abstract paragraphs are an interpolation, and would more com- These working notes summarise a genre theory that accounts fortably appear in a panel or box if I were able to write in for document layout in a three part communication model that another genre Ð textbook perhaps. Limited to the linearity recognises not only the effort of the writer to set out a topic of prose, I should really spend time crafting my language, and the purposeful effort by a reader to access information, and working out a way to knit the anecdote more closely but also the professional and manufacturing processes that 3 intervene. I suggest that layout genres use conventions that at into my argument. some historical point are rooted in functionality (of document A year or two back I redesigned the medical journal The generation, manufacture or use) but which have become con- Lancet. Part of the brief was to make it clearer to readers ventionalised. It follows that genres will shift over time as that as well as acting as a primary research journal reasons to generate or access information change, and as text through its refereed papers and letter, The Lancet also technologies develop. Case studies are described that illus- trate key aspects of the model and offer insight into the way contains highly topical and readable medical journalism. designers think about layout. -
The Arydshln Package∗
The arydshln package∗ Hiroshi Nakashima (Kyoto University) 2019/02/21 Abstract This file gives LATEX's array and tabular environments the capability to draw horizontal/vertical dash-lines. Contents 1 Introduction 3 2 Usage 3 2.1 Loading Package . 3 2.2 Basic Usage . 4 2.3 Style Parameters . 4 2.4 Fine Tuning . 5 2.5 Finer Tuning . 5 2.6 Performance Tuning . 6 2.7 Compatibility with Other Packages . 7 3 Known Problems 9 4 Implementation 10 4.1 Problems and Solutions . 10 4.2 Another Old Problem . 13 4.3 Register Declaration . 14 4.4 Initialization . 17 4.5 Making Preamble . 22 4.6 Building Columns . 27 4.7 Multi-columns . 30 4.8 End of Rows . 32 4.9 Horizontal Lines . 33 4.10 End of Environment . 37 4.11 Drawing Vertical Lines . 38 ∗This file has version number v1.76, last revised 2019/02/21. 1 4.12 Drawing Dash-lines . 44 4.13 Shorthand Activation . 45 4.14 Compatibility with colortab ........................... 48 4.15 Compatibility with longtable ........................... 48 4.15.1 Initialization . 49 4.15.2 Ending Chunks . 51 4.15.3 Horizontal Lines and p-Boxes . 53 4.15.4 First Chunk . 55 4.15.5 Output Routine . 56 4.16 Compatibility with colortbl ........................... 60 4.16.1 Initialization, Cell Coloring and Finalization . 62 4.16.2 Horizontal Line Coloring . 63 4.16.3 Vertical Line Coloring . 65 4.16.4 Compatibility with longtable ...................... 68 2 1 Introduction In January 1993, Weimin Zhang kindly posted a style hvdashln written by the author, which draws horizontal/vertical dash-lines in LATEX's array and tabular environments, to the news group comp.text.tex. -
Sig Process Book
A Æ B C D E F G H I J IJ K L M N O Ø Œ P Þ Q R S T U V W X Ethan Cohen Type & Media 2018–19 SigY Z А Б В Г Ґ Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ч Ц Ш Щ Џ Ь Ъ Ы Љ Њ Ѕ Є Э І Ј Ћ Ю Я Ђ Α Β Γ Δ SIG: A Revival of Rudolf Koch’s Wallau Type & Media 2018–19 ЯREthan Cohen ‡ Submitted as part of Paul van der Laan’s Revival class for the Master of Arts in Type & Media course at Koninklijke Academie von Beeldende Kunsten (Royal Academy of Art, The Hague) INTRODUCTION “I feel such a closeness to William Project Overview Morris that I always have the feeling Sig is a revival of Rudolf Koch’s Wallau Halbfette. My primary source that he cannot be an Englishman, material was the Klingspor Kalender für das Jahr 1933 (Klingspor Calen- dar for the Year 1933), a 17.5 × 9.6 cm book set in various cuts of Wallau. he must be a German.” The Klingspor Kalender was an annual promotional keepsake printed by the Klingspor Type Foundry in Offenbach am Main that featured different Klingspor typefaces every year. This edition has a daily cal- endar set in Magere Wallau (Wallau Light) and an 18-page collection RUDOLF KOCH of fables set in 9 pt Wallau Halbfette (Wallau Semibold) with woodcut illustrations by Willi Harwerth, who worked as a draftsman at the Klingspor Type Foundry. -
Ligature Modeling for Recognition of Characters Written in 3D Space Dae Hwan Kim, Jin Hyung Kim
Ligature Modeling for Recognition of Characters Written in 3D Space Dae Hwan Kim, Jin Hyung Kim To cite this version: Dae Hwan Kim, Jin Hyung Kim. Ligature Modeling for Recognition of Characters Written in 3D Space. Tenth International Workshop on Frontiers in Handwriting Recognition, Université de Rennes 1, Oct 2006, La Baule (France). inria-00105116 HAL Id: inria-00105116 https://hal.inria.fr/inria-00105116 Submitted on 10 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ligature Modeling for Recognition of Characters Written in 3D Space Dae Hwan Kim Jin Hyung Kim Artificial Intelligence and Artificial Intelligence and Pattern Recognition Lab. Pattern Recognition Lab. KAIST, Daejeon, KAIST, Daejeon, South Korea South Korea [email protected] [email protected] Abstract defined shape of character while it showed high recognition performance. Moreover when a user writes In this work, we propose a 3D space handwriting multiple stroke character such as ‘4’, the user has to recognition system by combining 2D space handwriting write a new shape which is predefined in a uni-stroke models and 3D space ligature models based on that the and which he/she has never seen. -
Visual Research Universal Communication Communication of Selling the Narrow Column Square Span Text in Color Change of Impact New Slaves
VISUAL RESEARCH UNIVERSAL COMMUNICATION COMMUNICATION OF SELLING THE NARROW COLUMN SQUARE SPAN TEXT IN COLOR CHANGE OF IMPACT NEW SLAVES ON TYPOGRAPHY by Herbert Bayer Typography is a service art, not a fine art, however pure and elemental the discipline may be. The graphic designer today seems to feel that the typographic means at his disposal have been exhausted. Accelerated by the speed of our time, a wish for new excitement is in the air. “New styles” are hopefully expected to appear. Nothing is more constructive than to look the facts in the face. What are they? The fact that nothing new has developed in recent decades? The boredom of the dead end without signs for a renewal? Or is it the realization that a forced change in search of a “new style” can only bring superficial gain? It seems appropriate at this point to recall the essence of statements made by progressive typographers of the 1920s: Previously used largely as a medium for making language visible, typographic material was discovered to have distinctive optical properties of its own, pointing toward specifically typographic expression. Typographers envisioned possibilities of deeper visual experiences from a new exploitation of the typographic material itself. Typography was for the first time seen not as an isolated discipline and technique, but in context with the ever-widening visual experiences that the picture symbol, photo, film, and television brought. They called for clarity, conciseness, precision; for more articulation, contrast, tension in the color and black and white values of the typographic page. They recognized that in all human endeavors a technology had adjusted to man’s demands; while no marked change or improvement had taken place in man’s most profound invention, printing-writing, since Gutenberg. -
Smooth Writing with In-Line Formatting Louise S
NESUG 2007 Posters Smooth Writing with In-Line Formatting Louise S. Hadden, Abt Associates Inc., Cambridge, MA ABSTRACT PROC TEMPLATE and ODS provide SAS® programmers with the tools to create customized reports and tables that can be used multiple times, for multiple projects. For ad hoc reporting or the exploratory or design phase of creating custom reports and tables, SAS® provides us with an easy option: in-line formatting. There will be a greater range of in-line formatting available in SAS 9.2, but the technique is still useful today in SAS versions 8.2 and 9.1, in a variety of procedures and output destinations. Several examples of in-line formatting will be presented, including formatting titles, footnotes and specific cells, bolding specified lines, shading specified lines, and publishing with a custom font. INTRODUCTION In-line formatting within procedural output is generally limited to three procedures: PROC PRINT, PROC REPORT and PROC TABULATE. The exception to this rule is in-line formatting with the use of ODS ESCAPECHAR, which will be briefly discussed in this paper. Even without the use of ODSESCAPECHAR, the number of options with in- line formatting is still exciting and almost overwhelming. As I was preparing to write this paper, I found that I kept thinking of more ways to customize output than would be possible to explore at any given time. The scope of the paper therefore will be limited to a few examples outputting to two destination “families”, ODS PRINTER (RTF and PDF) and ODS HTML (HTML4). The examples presented are produced using SAS 9.1.3 (SP4) on a Microsoft XP operating system. -
Glossary 1 Terms Used in Graphic Design and Printing
Computer Presentation of Data 121 GLOSSARY 1 GLOSSARY 1 TERMS USED IN GRAPHIC DESIGN AND PRINTING Words in italics are separately defmed. alphabet length The space occupied by the 26 lowercase letters in a given typeface and size, when they are set in a single line without spaces. alphanumerics Letters and numbers, as opposed to other kinds of symbol. artwork Text or graphics presented in a form suitable for reproduction. In desktop publishing, the artwork is usu ally in the form of output from a laser printer. ascender Thepartofalowercase letter, such as 'd' or'h', that rises above the x-height. asymmetrical layout A page layout that has no central axis. Typically, both headings and text would be ranged left. back-edge In a bound document, the edge of the page nearest to the binding. baseline An imaginary horizontal line with which the bases of most lowercase letters (i.e. those without descenders) are aligned. baseline-to-baseline measurement The measurement (usually in points) from the baseline of one line of type to the baseline of the next. See also: linefeed. body size The term originates from metal type and it refers to the size of the 'body' on which each character is cast. The body size, usually measured in points, is the vertical di mension of the surfaces carrying the characters. With digital type there is no physical body, so the term has little relevance. See also: point size. brightness The subjective impression caused by the lumi nance of an object. cap. height See: capital-letter height. capital-letter height The height of the capital letters in a given typeface and size, measured from the baseline to the capita/line.