Novette Target-Physics Experiments

Total Page:16

File Type:pdf, Size:1020Kb

Novette Target-Physics Experiments Energy and Technology Review Lawrence Livermore National Laboratory April 1985 Novette Target-Ph ysics Experiments We have used the Novette laser to explore physical effects vital to the attainment of ICF goals: those governing the transfer of energy from a laser beam to a target capsule and the peak compression reached in the fuel. The objectives of the LLNL laser to produce the targets for laser For further information contact fusion program are to understand and irradiation, and develop our modeling R. Paul Drake (415) 422-6706. develop the inertial-confinement fusion capability so that we can accurately (IeF) approach to controlled specify both the laser facility and the thermonuclear power for both military targets we will need to achieve our goal and civilian (i.e., power-production) of producing high-gain implosions. applications. In IeF, an intense energy Target-physics experiments serve source, such as a laser, is used to two purposes. First, they determine the implode a capsule containing constraints on lasers and targets intended thermonuclear fuel (e.g., a mixture of to produce high-gain implosions. Second, deuterium and tritium) to high densities they test our understanding of the low­ and temperatures. Weapon-physics gain implosions we can now produce. experiments have already been To do these novel experiments, we have conducted with the Novette laser, and had to develop many new diagnostics more are planned with the Nova laser and experimental techniques.} Figure 1 facility. However, full realization of the illustrates the variety of diagnostic military and civilian IeF applications instruments arrayed around a single reF requires, first, the attainment of well­ experiment. Our experiments with diagnosed, high-gain performance of Novette2 produced more information thermonuclear capsules. per laser shot than any previous reF To achieve such high-gain implosions experiments, helping us to make rapid (in which the energy released by progress in several areas of target implosion and fusion of the fuel is many physics. times the laser input energy), we must Our target-physics studies can be advance the state of the art in laser roughly categorized either as laser­ construction, target fabrication, computer plasma interaction experiments or as modeling, and target-physics implosion-physics experiments. In the experiments. We must learn to build laser-plasma interaction experiments, we increasingly powerful lasers at an explore the phenomena that occur as the affordable cost, develop new materials laser light interacts with the target and fabrication and assembly techniques plasma (e.g., absorption and hot-electron 35 production). This information, in turn, targets with one or two beams of green is used to define laser and target (0.53-.um) or ultraviolet (O .26-.um) light, specifications. For example, a poor choice frequency-converted from the laser's of laser and target can produce too many fundamental infrared (1.0S-.um) hot electrons, which prevent high-gain wavelength. At the end of the laser implosions. Laser-plasma interaction amplifier chain, each 74-cm-diameter experiments in which we study hot­ beam was focused by a large lens to electron production enable us to avert strike a spot on the target less than a few this problem by better target design. millimetres in diameter. The concentrated In implosion-physics experiments, we laser light had an intensity greater than focus on understanding the physics of 10 14 W/cm2 (more than a million billion imploding targets. The detailed modeling times the intensity of sunlight at the required in these experiments is done earth's surface). with the the LASNEX computer code.3 The high temperatures produced by Well-diagnosed implosion experiments such a beam cause the surface of the enable us to compare predicted and target to ablate, and the electrons in the measured performance. The models can heated material are torn from their atoms then be improved against the deficiencies to form a fully ionized gas called a exposed and further tested. These two plasma. The laser light absorbed by the types of experiments-laser-plasma plasma heats it to so high a temperature interaction and implosion physics-thus that it radiates soft x rays. The soft x rays provide a bootstrap process, in which strike the capsule and vaporize its progress in one area supports and surface. The vaporized material blows off Fig. 1 facilitates progress in other areas. equally in all directions at high velocity. The array of diagnostic instruments To understand why such experiments This violent outward flow of material used in Novette target-physics experi­ are necessary, we must look at the produces an equal and opposite reaction, ments. These instruments imaged sequence of events that produce a fusion causing a rocket-like inward thrust that the source and measured the timing reaction. In meaningful laser-fusion compresses the fuel to high density, and spectral composition of the light and x rays from the target, as well experiments, the laser pulse must strike simultaneously heating at least part of it as the neutron yield and the neutron an appropriate target at the right to the ignition temperature of the fusion activation. location. Our Novette laser irradiated reaction. If the inertia of the burning fuel confines it long enough (hence the term Radiochemistry ~ inertial confinement fusion), there will be D a net production of energy. o Arrays of photodiodes There are several villains in this piece, Neutron one of which is the high-energy yield electrons generated in the plasma by <' Raman scattering and other processes. o These hot electrons have enough energy to penetrate deep into the fuel, depositing energy and heating it. This is exactly what we want to avoid. Hot fuel is harder to compress than cold fuel, so ~ t ========:J prematurely heated targets never reach Ta ..etl t:J the densities they would otherwise theoretically attain. It has become clear that one of the major keys to the ) Light collectors development of high-gain implosions is ¢:) for optical to suppress these high-energy electrons. ~ spectroscopy We used the Novette laser to B investigate several critical aspects of this o o ~\~OPtical/x_ray complex process: the interaction of the streak camera Dante soft-x-ray j ~ laser light with the plasma, the efficiency spectrometers J X-ray microscope of soft-x-ray production, and the compression of the D-T fuel to high Cassegrain Leake. "y,tal X-<oy,peclromele< optical pyrometer spectrograph density. 36 INERTIAL FUSION ser-Plasma Interaction Raman scattering was insignificant Experiments because the scattered light wave and the UIn laser-plasma interaction plasma wave could not become very experiments, we try to determine what intense before escaping the resonant happens when a high-intensity laser region. Because the Novette laser was so beam penetrates and interacts with a much more powerful, we could spread plasma. The mission of such experiments its beam over a larger target area and for ICF is to identify the processes that still maintain the same intensity as in the affect high-gain targets and to discover Argus experiments. This produced larger, how they vary as laser and plasma more planar plasmas that gave these parameters change. waves room to grow more intense before This mission has three parts. First, escaping. The plasmas in fu ture, high­ we must produce and diagnose plasma gain experiments will be even larger. conditions that are relevant both to current target-physics experiments and Raman Scattering in Large to future high-gain targets. Second, we Plasmas must identify both those processes that To simulate these future, larger can scatter the laser light and keep it plasmas, we used thin foil targets made from being absorbed in the target and of plastic or gold. These targets exploded those that convert the laser light into hot early in the laser pulse and expanded electrons. Finally, we must determine the both toward and away from the laser to severity of adverse effects and, if produce a very large plasma. Figure 2 is necessary, mitigate them. The study of a time-resolved image of the ultraviolet Raman scattering illustrates all three of bremsstrahlung emission from such a these. target, color-coded by computer The most desired process for ICF by processing to show the variation in which laser light is absorbed in a plasma intensity of the emissions as a function is collisional absorption. In this process, of time (horizontal axis) and distance the incident light wave causes the from the target plane (vertical axis). electrons in the plasma to oscillate. The Figure 3 compares data from a oscillating electrons then collide with the large number of such shots with the ions in the plasma, absorbing the energy predictions of the LASNEX computer of the light. code. Figure 3a shows the density along In contrast, Raman scattering converts the axis of the plasma, at the center of the incident light into two waves. One the I-ns laser pulse. The gray area shows of these is an electron plasma wave, the behavior predicted by LASNEX, and in which undulations in the electron the solid circles show the density profiles density travel through the plasma. The energy in an electron plasma wave is often converted into (unwanted) hot electrons. The second kind of wave is a scattered light wave, which escapes and carries its energy out of the plasma. Raman scattering, thus, prevents the laser light from being absorbed gradually through electron collisional absorption Fig. 2 and also produces harmful hot electrons.4 A thin plastic film , irradiated with green Raman scattering, like several other (O.S3-jlm) light from the Novette laser, explodes to produce a large, uniform interaction processes, occurs only at a plasma. This streak-camera image was specific location in the plasma (a made with the ultraviolet light emitted resonant region) where the laser light by the plasma.
Recommended publications
  • Nova Laser Technology
    Nova Laser Technology In building the Nova laser, we have significantly advanced many technologies, including the generation and propagation of laser beams. We have also developed innovations in the fields of alignment, diagnostics, computer control, and image processIng.• For further information contact Nova is the world's most powerful at least 10 to 30 times more energetic John F. Holzrichter (415) 423-7454. laser system. It is designed to heat and than Shiva would be needed to compress small targets, typically 0.1 cm investigate ignition conditions and in size, to conditions otherwise produced possibly to reach gains near unity. only in nuclear weapons or in the Because of the importance of such a interior of stars. Its beams can facility to the progress of inertial fusion concentrate 80 to 120 kJ of energy (in research and because of the construction 3 ns) or 80 to 120 TW of power (in time entailed (at least five to seven 100 ps) on such targets. To couple energy years), the Nova project was proposed to more favorably with the target, Nova's the Energy Research and Development laser light will be harmonically converted Administration and to Congress. It was with greater than 50% efficiency from its decided to base this system on the near-infrared fundamental wavelength proven master-oscillator, linear-amplifier­ (1.05-,um wavelength) to green (0.525- chain laser system used on the Argus ,um) or blue (0.35-,um) wavelengths. The and Shiva systems. We had great goals of our experiments with Nova are confidence in extending this to make accurate measurements of high­ neodymium-glass laser technology to the temperature and high-pressure states of 200- to 300-kJ level.
    [Show full text]
  • ENGINEERING DESIGN of the NOVA LASER FACILITY for By
    ENGINEERING DESIGN OF THE NOVA LASER FACILITY FOR INERTIAL-CONFINEMENT FUSION* by W. W. Simmons, R. 0. Godwin, C. A. Hurley, E. P. Wallerstein, K. Whitham, J. E. Murray, E. S. Bliss, R. G. Ozarski. M. A. Summers, F. Rienecker, D. G. Gritton, F. W. Holloway, G. J. Suski, J. R. Severyn, and the Nova Engineering Team. Abstract The design of the Nova Laser Facility for inertia! confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to- performance requirements as they impact the various subsystems that comprise this complex experimental facility. - DISCLAIMER - CO;.T-CI104n--17D DEf;2 013.375 *Research performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. Foreword The Nova Laser System for Inertial Confinement Fusion studies at Lawrence Livermore National Laboratories represents a sophisticated engineering challenge to the national scientific and industrial community, embodying many disciplines - optical, mechanical, power and controls engineering for examples - employing state-of-the-art components and techniques. The papers collected here form a systematic, comprehensive presentation of the system engineering involved in the design, construction and operation of the Nova Facility, presently under construction at LLNL and scheduled for first operations in 1985. The 1st and 2nd Chapters present laser design and performance, as well as an introductory overview of the entire system; Chapters 3, 4 and 5 describe the major engineering subsystems; Chapters 6, 7, 8 and 9 document laser and target systems technology, including optical harmonic frequency conversion, its ramifications, and its impact upon other subsystems; and Chapters 10, 11, and 12 present an extensive discussion of our integrated approach to command, control and communications for the entire system.
    [Show full text]
  • Nd Lu Caf2 for High-Energy Lasers Simone Normani
    Nd Lu CaF2 for high-energy lasers Simone Normani To cite this version: Simone Normani. Nd Lu CaF2 for high-energy lasers. Physics [physics]. Normandie Université, 2017. English. NNT : 2017NORMC230. tel-01689866 HAL Id: tel-01689866 https://tel.archives-ouvertes.fr/tel-01689866 Submitted on 22 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Physique Préparée au sein de l’Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Étude de Cristaux de CaF2:Nd:Lu pour Lasers de Haute Énergie Présentée et soutenue par Simone NORMANI Thèse soutenue publiquement le 19 octobre 2017 devant le jury composé de M. Patrice CAMY Professeur, Université de Caen Normandie Directeur de thèse M. Alain BRAUD MCF HDR, Université de Caen Normandie Codirecteur de thèse M. Jean-Luc ADAM Directeur de Recherche, CNRS Rapporteur Mme. Patricia SEGONDS Professeur, Université de Grenoble Rapporteur M. Jean-Paul GOOSSENS Ingénieur, CEA Examinateur M. Maurizio FERRARI Directeur de Recherche, CNR-IFN Examinateur Thèse dirigée par Patrice CAMY et Alain BRAUD, laboratoire CIMAP Université de Caen Normandie Nd:Lu:CaF2 for High-Energy Lasers Thesis for the Ph.D.
    [Show full text]
  • X-Ray Lasing: the Novette Laser
    X-Ray Lasing: The Novelle Laser Although the Novette laser system served primarily as a test bed for advanced concepts of targets and lasers for the Nova system, its flexibility enabled us to use it for research that led to the world's first demonstration of x-ray lasing. ver the past decade, we have harmonic conversion for producing For further information contact built a series of ever more light of higher frequencies (that is, Kenneth R. Manes (415) 423-6207. O powerful and complex laser shorter wavelengths). With Novette, systems Ganus, Argus, Shiva, and now we demonstrated a system for Nova) devoted to research on inertial routinely generating powerful beams confinement fusion (ICF) and weapon of green (0.53-pm) and ultraviolet physics. However, the Novette laser (0.35- and 0.26-pm) light, greatly Fig. 1 system (Fig. 1) did not fit neatly into broadening the range of feasible Artist's rendering of the business end of this series. Although it shared physics experiments. We confirmed the Novette laser system, showing the target characteristics of the other lasers, such that laser-plasma coupling, and chamber, the harmonic-conversion arrays, and the extensive diagnostic instrumentation. as master-oscillator power-amplifier therefore the performance of the rCF The laser amplifier chains are out of the (MOPA) architecture, neodymium­ capsules, is greatly enhanced if green picture, folded trombone style to fit into the glass amplifiers, and a 1.053-pm or ultraviolet light is used instead of available space. fundamental wavelength, in many ways Novette was considerably less complex than its predecessor, the Shiva laser.
    [Show full text]
  • Late-Time Simulation of National Ignition Facility Hohlraums
    UCRL-JRNL-206693 Late-time simulation of National Ignition Facility Hohlraums D.C. Eder, O.S. Jones, M.M. Marinak, M.T. Tobin, B.J. MacGowan September 21, 2004 Nuclear Fusion 2004 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Late-time simulation of National Ignition Facility hohlraums D. C. Eder, A. E. Koniges, O. S. Jones, M. M. Marinak, M. T. Tobin, and B. J. MacGowan Lawrence Livermore National Laboratory, Livermore, CA 94551 Abstract The late-time (t ≥ 80 ns) behavior of hohlraums designed for the National Ignition Facility (NIF) is simulated using the multiphysics radiation hydrodynamics codes LASNEX and HYDRA. The spatial distribution of x-radiation outside the hohlraum is shown as a function of time. The energy spectrum of the x-ray emission is presented for various hohlraum viewing angles.
    [Show full text]
  • 2Fi Lawrence Livermore Laboratory I*^P^*S
    V PREPRINT UCRL- 77944 Ur,\>\--m'>te^-2fi Lawrence Livermore Laboratory STATUS OF LARGE NEODYHIUM GLASS LASERS James A. Glaze, William W. Simmons and Wilhelm F. Hagen March ID, 1976 mm This Paper was Prepared for Submission to the Society of Photo-Optical Instrumentation Engineers SPIE Meeting, Reston, VA March 22-23, 1976 This is a preprint ot a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. i*^P^*S' ««*- -»v«>*^_ DiSTRiKUTiONC; 7602 STATUS OF LARGE NEODYMIUM GLASS LASERS* •ponum] by llw Van* Stu „ o| M[l Blmc*i ng PttritrmtM A« Canes A. Glaje, William H. Simmons and Wlhelm F. Hagen uitKnnmtion. 01 IIKU tiqitiqRt, Laser Fusion Division, Lawrence Livermore Laboratory nmnir. <ieir» 01 tngfttd Llvermore, California 94550 *IR£t» ottTIfcnitttllly f.tth mrnw en>,«l* owned (HJHi. Introduction The Nd:Glass laser is used extensively throughout the world for laser fusion and laser plasma Inter­ action studies. Its popularity, to a large extent, stems from the fact that 1t 1s capable of operating reliably in the subnanosecond-terawatt power regime. In addition, the technology necessary to combine a large number of laser chains to produce a system capable of multi-terawatt performance currently exists and is being applied. At the Lawrence Livermore Laboratory two large laser systems are currently in operation and two are under construction. The OANUS and CYCLOPS systems produce 0.5 and 1 terawatt of focusable power 1n 0.1 ns respectively.
    [Show full text]
  • Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas
    PSFC/JA-20-4 Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas J. A. Frenje January 2020 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 USA The work described herein was supported in part by US DOE (Grant No. DE-FG03-03SF22691), LLE (subcontract Grant No. 412160-001G) and the Center for Advanced Nuclear Diagnostics (Grant No. DE-NA0003868). Reproduction, translation, publication, use and disposal, in whole or in part, by or for the United States government is permitted. Submitted to Plasma Physics and Controlled Fusion Nuclear Diagnostics for Inertial Confinement Fusion (ICF) Plasmas J.A. Frenje1 1Massachusetts Institute of Technology, Cambridge, MA 02139, USA Email: [email protected] The field of nuclear diagnostics for Inertial Confinement Fusion (ICF) is broadly reviewed from its beginning in the seventies to present day. During this time, the sophistication of the ICF facilities and the suite of nuclear diagnostics have substantially evolved, generally a consequence of the efforts and experience gained on previous facilities. As the fusion yields have increased several orders of magnitude during these years, the quality of the nuclear-fusion-product measurements has improved significantly, facilitating an increased level of understanding about the physics governing the nuclear phase of an ICF implosion. The field of ICF has now entered an era where the fusion yields are high enough for nuclear measurements to provide spatial, temporal and spectral information, which have proven indispensable to understanding the performance of an ICF implosion. At the same time, the requirements on the nuclear diagnostics have also become more stringent.
    [Show full text]
  • Lll Laser Program Overview
    I ~ Ellerll APR 13 1~76 ~ illid ~~WJF Destroy Telllllllllill Route - Hold mos. Prepared for U.S . Energy Research & Development lell Administration under Contract No. W-7405-Eng-48 LA.WRENCE LIVERMORE LA.BORATORY LLL LASER PROGRAM LASERS AND LASER APPLICATIONS LLL LASER PROGRAM OVERVIEW ------------------------ During the past year, substantial progress has been thermonuclear burn of microscopic targets containing made toward laser fusion, laser isotope separation, and deuterium and tritium. Experiments are being run on the development of advanced laser media, the three a single-pulse basis , the emphasis being on fa st main thrusts of the LLL laser program. diagnostics of neutron, x-ray, a-particle, and scattered Our accomplishments in laser fusion have included: laser-light fluxes from the target. Our laser source fo r • Firing and diagnosing more than 650 individual this work is the neodymium-doped-glass (Nd:glass) experiments on the O.4-TW Janus laser system laser operating in a master-oscillator, power-amplifier (including many experiments with neutron yields in configuration, where a well-characterized, mode-locked the 107 range). pulse is shaped and ampli fied by successive stages to • Producing 1 TW of on-target irradiation with a peak power of I TW in a 20-cm-diam beam. Cyclops, presently the world's most powerful Thermonuclear burn has been demonstrated. With single-beam laser. successively larger Nd :glass laser systems, we now • Completing the design for the 25-TW Shiva laser expect sequentially to demonstrate significant burn, system and ordering the long-lead-time components. light energy breakeven (equal input and output (The building to house this laser system is on schedule energies) and, finally, net energy gain.
    [Show full text]
  • Laser Confinement Fusion • Use Powerful Laser to Compress And
    Laser Confinement Fusion • Use powerful laser to compress and heat hydrogen • Hydrogen stored in very small pellets • Outside of pellet boiled off by laser beam • Ablation causes plasma • Pellet compressed 4-5 times density of liquid hydrogen •Reaches temperature/pressure of sun core • Get Fusion reaction H 3 + H 2 → He4 + n +14MeV Laser Fusion Reactor • Pellets dropped into reactor • Laser pulse (40 nsec & terawatt) ignites compression wave • Energy from fusion carried in neutrons & helium 3 • Liquid Lithium shield adsorbs neutrons and energy • Regular "steam" generator to get power Argus Laser Fusion Facility • Lawrence Livermore Labs: 2 Terawatt in 1 nsec pulse • Nd:yag/glass laser built in 1976 • Demonstrated concepts for laser confinement fusion • Problem: need to have pellet heated very uniformly • Thus next stage increased number of beams Shiva Laser Fusion Facility • 20 Beam Nd:Yag system • Lawrence Livermore Labs: 30 Terawatt, 1 nsec • Most important result: needed to go to shorter wavelength National Ignition Facility • National Ignition Facility (NIF) newest design • 1.8 megaJoul, frequency tripled Nd:glass laser • 10 ps pulse, 1019 W/cm2 • 192 beam lines combined • Test concepts with Peta Wat laser • 1.25x1015W, 0.55 ps pulse, 1021 W/cm2 • Located at Lawrence Livermore Labs Laser Flight • Use orbital laser satellites to send down beams orbital solar power satellites • Light focused and tracts aircraft • Flight takes off normally - regular engines • Switches to laser drive for cruse section of flight • Significant savings in
    [Show full text]
  • X-Ray Emission from National Ignition Facility Indirect Drive Targets
    UCRL-JC-123557 X-Ray Emission from National Ignition Facility Indirect Drive Targets A. T. Anderson, R. A. Managan, M. T. Tobin, and P. F. Peterson AUG 1 6 1338 This paper was prepared for submittal to the American Nuclear Society 12th Topical Meeting on the Technology of Fusion Energy Reno, NV June 16-20,1996 This isapreprintofapaperintendedforpublicationina journal orproceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author. DISTRIBUTION OF THIS DOCUMENT IS UNIMTED DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its-endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available origmal document.
    [Show full text]
  • Plasma Physics and Controlled Nuclear Fusion Research 1984 Vol.3 TENTH CONFERENCE PROCEEDINGS, LONDON, 12-19 SEPTEMBER 1984 Nuclear Fusion, Supplement 1985
    Plasma Physics and Controlled Nuclear Fusion Research 1984 Vol.3 TENTH CONFERENCE PROCEEDINGS, LONDON, 12-19 SEPTEMBER 1984 Nuclear Fusion, Supplement 1985 fj&\ VW& INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1985 ^^ m PLASMA PHYSICS AND CONTROLLED NUCLEAR FUSION RESEARCH 1984 VOLUME 3 The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HAITI PARAGUAY ALBANIA HOLY SEE PERU ALGERIA HUNGARY PHILIPPINES ARGENTINA ICELAND POLAND AUSTRALIA INDIA PORTUGAL AUSTRIA INDONESIA QATAR BANGLADESH IRAN, ISLAMIC REPUBLIC OF ROMANIA BELGIUM IRAQ SAUDI ARABIA BOLIVIA IRELAND SENEGAL BRAZIL ISRAEL SIERRA LEONE BULGARIA ITALY SINGAPORE BURMA IVORY COAST SOUTH AFRICA BYELORUSSIAN SOVIET JAMAICA SPAIN SOCIALIST REPUBLIC JAPAN SRI LANKA CAMEROON JORDAN SUDAN CANADA KENYA SWEDEN CHILE KOREA, REPUBLIC OF SWITZERLAND CHINA KUWAIT SYRIAN ARAB REPUBLIC COLOMBIA LEBANON THAILAND COSTA RICA LIBERIA TUNISIA CUBA LIBYAN ARAB JAMAHIRIYA TURKEY CYPRUS LIECHTENSTEIN UGANDA CZECHOSLOVAKIA LUXEMBOURG UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA MADAGASCAR REPUBLIC DEMOCRATIC PEOPLE'S MALAYSIA UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALI REPUBLICS DENMARK MAURITIUS UNITED ARAB EMIRATES DOMINICAN REPUBLIC MEXICO UNITED KINGDOM OF GREAT ECUADOR MONACO BRITAIN AND NORTHERN EGYPT MONGOLIA IRELAND EL SALVADOR MOROCCO UNITED REPUBLIC OF ETHIOPIA NAMIBIA TANZANIA FINLAND NETHERLANDS UNITED STATES OF AMERICA FRANCE NEW ZEALAND URUGUAY GABON NICARAGUA VENEZUELA GERMAN DEMOCRATIC REPUBLIC NIGER VIET NAM GERMANY, FEDERAL REPUBLIC OF NIGERIA YUGOSLAVIA GHANA NORWAY ZAIRE GREECE PAKISTAN ZAMBIA GUATEMALA PANAMA The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna.
    [Show full text]
  • Fusion Reactions
    Nuclear Fusion Technology Dr. BC Choudhary, Professor Applied Science Department, NITTTR, Sector-26, Chandigarh-160019. Content Outlines Review of Nuclear Processes Nuclear Fusion Reactions Fusion Reactor Technologies Technological Developments Pros and Cons Foreseeable trends Four Forces of Nature Systematic Information about Nucleus . Nuclear density at the centre of the nucleus 44 3 0 10 nucleons/m Density of nucleons (r) in the inner region of the nucleus is about same for all nuclei. Surface thickness of all nuclei are very similar 1/3 Radius of nucleus, R = R0 A , small variation in radii . NOT ALL NUCLEI ARE SPHERICAL. Energies of nucleons in nucleus 10 MeV . ALL NUCLEI ARE NOT STABLE Nuclear Stability Proton unstable Stable nuclei Neutron unstable Stable n:p = 1.2 –1.4 Measure of Nuclear Stability . Binding Energy per nucleon 2 EB(Z,N) = {ZMp+NMn - M(Z,N)} c • Nuclei with the largest binding energy per nucleon are the most stable. • The largest binding energy per nucleon is 8.7 MeV, for mass number A = 60. • Beyond Bismuth, A = 209, nuclei are unstable. Nuclear Processes . We can release energy by creating nuclei that are more strongly bound (increasing Eb) Fission: Heaviest nuclei 56 Eb Fe split into smaller fragments. 238 N U Fusion: Lightest nuclei 1H combine to form heavier N nuclei. Both the processes evolve large amount of energy. Nuclear Fission and Fusion Nuclear fission: A large nucleus splits into several small nuclei when impacted by a neutron, and energy is released in this process Nuclear fusion: Several small nuclei fuse together and release energy Electricity from Nuclear Fission Nuclear power plants account ~17 percent of the worlds power.
    [Show full text]