Biomechanical Analysis of Femoral Fracture Fixation Using the Expert Adolescent Lateral Femoral Nail System
Total Page:16
File Type:pdf, Size:1020Kb
BIOMECHANICAL ANALYSIS OF FEMORAL FRACTURE FIXATION USING THE EXPERT ADOLESCENT LATERAL FEMORAL NAIL SYSTEM by Darshan. Srishail. Angadi A thesis submitted to the University of Birmingham for the degree of DOCTOR OF MEDICINE School of Clinical and Experimental Medicine College of Medical and Dental Sciences University of Birmingham University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Femoral fracture in adolescents is a severe injury. Recent studies of intramedullary nail fixation with rigid titanium alloy helical nail viz. Expert adolescent lateral femoral nail (ALFN) have reported good results. However, there is no in vitro biomechanical data available on this nail in the literature. Experimental testing and finite element analysis (FEA) were used to establish the stiffness parameters of small composite femurs with simulated fractures stabilised using ALFN. In comparison to intact femur, construct stiffness ranged from maximum (114%) to minimum (20%) for healed fracture and segmental fracture, respectively. Simulation testing in SolidWorksTM was performed with validated FEA model to evaluate the effect of clinical and implant factors. Maximum predicted stress in the distal interlocking screw remained in an acceptable range (160.25 - 188.51 MPa) irrespective of the level of femoral shaft fracture with a relative decrease in stress values as the fracture callus healed over a 16 week period. The relative angle between the ALFN and proximal interlocking screw and implant material were two significant factors influencing stress at the interlocking screw and nail interface. In conclusion, a rigid helical titanium alloy femoral intramedullary nail can perform satisfactorily under physiological loading conditions experienced in the perioperative period. ii Dedication I dedicate this work to my family. I express my gratitude to my parents - Dr S. F. Angadi and Mrs R. S. Angadi for their unwavering support in my life and work. I thank my wife, Priyanka for her love, patience and help throughout the course of this work. Finally, my daughter, Vedhika who has been a source of joy and happiness. iii Acknowledgements I am grateful to my supervisors Prof. T.G. Barrett, Prof. D.E.T. Shepherd and Mr. R. Vadivelu for their guidance, support and encouragement during the course of this research work. I thank Mr C Hingley and team for their help with the experimental study. I would like to thank Mr M.J. Porteous for corresponding with the implant manufacturer and giving me flexibility with my clinical work enabling me to complete this research. I am grateful to the AO Foundation, UK for the grant towards this research project. Finally, I would like to thank the following organisations: DePuy Synthes for providing the intramedullary nails to conduct the study. MTS Systems for providing technical help and support with the testing machines. Heraeus Medical for providing the PMMA to fabricate supports and molds. iv Table of Contents Abstract ..................................................................................................................................... ii Dedication ................................................................................................................................. iii Acknowledgements .................................................................................................................. iv Table of Contents ...................................................................................................................... v List of Figures .......................................................................................................................... ix List of Tables ........................................................................................................................... xx List of Terminology ............................................................................................................. xxiii 1 INTRODUCTION ............................................................................................................. 1 1.1 Background .................................................................................................................. 1 1.2 Current evidence .......................................................................................................... 3 1.2.1 Clinical studies ..................................................................................................... 3 1.2.2 Biomechanical studies ........................................................................................ 10 1.2.3 Finite element analysis (FEA) studies ................................................................ 13 1.3 Aims and outline of the study .................................................................................... 14 1.4 Guide to the thesis chapters ....................................................................................... 16 2 ADOLESCENT FEMUR ................................................................................................ 18 2.1 Macroscopic architecture ........................................................................................... 18 2.2 Microscopic architecture ............................................................................................ 19 2.2.1 Hierarchical organisation of bone ...................................................................... 19 2.2.2 Biology and composition of bone ....................................................................... 22 2.2.3 Physis .................................................................................................................. 22 2.3 Early development, ossification centers and growth zones of femur ........................ 24 2.4 Vascular supply of proximal femur and its clinical relevance ................................... 26 2.5 Mechanical properties of long bones ......................................................................... 28 2.5.1 Cortical bone ...................................................................................................... 28 2.5.2 Cancellous bone .................................................................................................. 31 2.6 Fracture and biology of fracture healing .................................................................... 35 2.6.1 Stages .................................................................................................................. 35 2.6.2 Treatment and fixation of adolescent femoral fracture ...................................... 37 2.7 Summary .................................................................................................................... 41 3 EXPERT ADOLESCENT LATERAL FEMORAL NAIL (ALFN) ........................... 42 3.1 History and development of intramedullary nail fixation .......................................... 42 3.2 Biomechanical features of intramedullary nails ........................................................ 45 3.3 Background ................................................................................................................ 52 v 3.4 Indications .................................................................................................................. 53 3.5 Design features of ALFN system ............................................................................... 53 3.6 Summary .................................................................................................................... 58 4 PAEDIATRIC FEMUR - EXPERIMENTAL MODEL .............................................. 59 4.1 Introduction ................................................................................................................ 59 4.2 Basic biomechanical concepts ................................................................................... 59 4.2.1 Force and displacement ...................................................................................... 60 4.2.2 Stress and strain .................................................................................................. 61 4.2.3 Mechanics of beams, columns and shafts ........................................................... 64 4.3 Objectives .................................................................................................................. 70 4.4 Materials and methods ............................................................................................... 70 4.4.1 Experimental femur model ................................................................................. 70 4.4.2 Design and development of test jigs and alignment molds ................................ 73 4.4.3 Biomechanical testing......................................................................................... 74 4.4.4 Data analysis ....................................................................................................... 85 4.5 Results .......................................................................................................................