Eddy Current Nondestructive Testing NATIONAL BUREAU of STANDARDS

Total Page:16

File Type:pdf, Size:1020Kb

Eddy Current Nondestructive Testing NATIONAL BUREAU of STANDARDS A 11 10 3 073222 TECH HAG. NATL INST OF STANDARDS! » fe* 1 All 103073222 to NBS SPECIAL PUBLICATION 589 U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Eddy Current Nondestructive Testing NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities 2 — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science. THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser- vices to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers: Applied Mathematics — Electronics and Electrical Engineering 2 — Mechanical Engineering and Process Technology 2 — Building Technology — Fire Research — Consumer Product Technology — Field Methods. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers: Programming Science and Technology — Computer Systems Engineering. 'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. 2 Some divisions within the center are located at Boulder, CO 80303. National Bureau of Standards Library, £-01 Admin. Bldg, FEB 2 7 1981 not o.cc. -£j <c Eddy Current Nondestructive Testing no. S~$9 C. 3~ Proceedings of the Workshop on Eddy Current Nondestructive Testing, held at the National Bureau of Standards, Gaithersburg, Maryland, on November 3-4, 1977 Edited by: George M. Free Center for Absolute Physical Quantities National Measurement Laboratory National Bureau of Standards Washington, DC 20234 \ JCO iptrml ptiJhhCa.il 0 U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary Jordan J. Baruch, Assistant Secretary for Productivity, Technology and Innovation j NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director Issued January 1981 Library of Congress Catalog Card Number: 80-600172 National Bureau of Standards Special Publication 589 Nat. Bur. Stand. (U.S.), Spec. Publ. 589, 153 pages (Jan. 1981) CODEN. XNBSAV U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1981 For sale l>y the Superintendent of Documents, U.S. Government Printing Office Washington. D.C. 20402 - Price $5.50 FOREWORD Although testing with eddy cur- These Proceedings are a record of that rents is regarded as one of the major Workshop. methods for nondestructive inspection, many people in the industry regard The purposes of the Workshop were to this technique as one that offers much (1) review the current status of eddy cur- greater potential than is presently rent measurement methodology and applica- realized. It is now used primarily tions, (2) define the directions for im- for the sorting of alloys by conduct- proved techniques and applications, and ivity measurements and for the inspec- (3) assess the needs for work on standards tion of relatively thin conducting mate- and underlying science to address present rial; thin-walled tubing constitutes a and future problems. The attendees were major inspection item for eddy current drawn from industry, university, and gov- techniques. ernment. We have thanked them all indi- vidually, but it is appropriate here also In the Nondestructive Evaluation to express our appreciation to them again (NDE) Program at the National Bureau of and particularly to the speakers. Standards, we are working to improve the reliability of nondestructive measure- I also wish to express my apprecia- ments. The present effort in eddy cur- tion to the planners of the Workshop, rent testing is directed primarily at Norman Belecki, George Free, and Barry conductivity measurements; a measurement Taylor of the NBS Electricity Division? service and standard reference materials George Birnbaum, of the NDE Program; and are planned to help the industry improve Robert Green of the Johns Hopkins Uni- this type of NDE measurements. Looking versity. I am confident that these Pro- beyond that, however, we at NBS agree ceedings will serve their intended pur- that new ideas and developments can lead poses and help the industry and NBS de- to greater utilization of eddy current fine fruitful areas for additional work methods. One means to examine that to improve eddy current nondestructive potential was a Workshop on Eddy Current testing. Nondestructive Testing; the Workshop was held at NBS on November 3 and 4, 1977, under the joint sponsorship of the NBS Electricity Division and the NDE Program. Harold Berger Program Manager Nondestructive Evaluation February 1978 iii PREFACE The intent of these Proceedings is Due to the method of printing the pro- to provide a record of the NBS Workshop ceedings, not all pictures and diagrams on Eddy Current Nondestructive Testing. turned out to be of equal clarity. I apol- With the excpetion of the first paper, ogize beforehand to those authors whose an overview of eddy current testing by pictures or diagrams are not of the excel- Dr. Robert McMaster, each paper present- lent quality which the participants viewed ed was followed by a period of discus- at the workshop. sion. The Proceedings followed the same format. Unfortunately, the com- ments of participants could not be at- tributed in all cases, but where it is possible the authors of the many com- ments, questions, and ideas are noted. Some editing of the discussion periods was done, consequently the discussion George M. Free periods are not "verbatim." Editor v TABLE OF CONTENTS PAGE FOREWORD iii Harold Berger PREFACE v ABSTRACT vi i i THE HISTORY, PRESENT STATUS, AND FUTURE DEVELOPMENTS OF EDDY CURRENT TESTS 1 Robert C. McMaster EDDY CURRENT TESTING: PRESENT AND FUTURE APPLICATIONS IN THE FERROUS METAL INDUSTRY 33 Richard B. Moyer EDDY CURRENT STANDARDS IN NONFERROUS METALS 39 Carlton E. Burley EDDY CURRENT INSPECTION OF GAS TURBINE BLADES 45 Robert A. Betz EDDY CURRENT EXAMINATION IN THE NUCLEAR INDUSTRY 49 Allen E. Wehrmeister EDDY CURRENT INSPECTION SYSTEMS FOR STREAM GENERATOR TUBING IN NUCLEAR POWER PLANTS 57 Clyde J. Denton USE OF ROUND ROBIN TESTS TO DETERMINE EDDY CURRENT SYSTEM PERFORMANCE 63 E. R. Reinhart EDDY CURRENT TESTING IN GOVERNMENT 77 Patrick C. McEleney CURRENT STATUS AND FUTURE DIRECTIONS OF EDDY CURRENT INSTRUMENTATION 81 Tracy W. McFarlan MULTIFREQUENCY EDDY CURRENT INSPECTION TECHNIQUES 87 Hugo L. Libby PULSED EDDY CURRENT TECHNIQUES FOR NONDESTRUCTIVE EVALUATION . 107 D. L. Waidelich THE INTRODUCTION OF SIGNAL PROCESSING TECHNIQUES TO EDDY CURRENT INSPECTION 113 E. E. Weismantel DEVELOPMENT OF NON-FERROUS CONDUCTIVITY STANDARDS AT BOEING 121 Arthur Jones NBS EDDY CURRENT STANDARDS PROGRAM 133 George Free ELECTROMAGNETIC THEORY AND ITS RELATIONSHIP TO STANDARDS 137 Arnold H. Kahn and Richard D. Spal DISCUSSION: NEW SCIENCE DIRECTIONS AND OPPORTUNITIES CONCLUDED FROM WORKSHOP SESSIONS 143 Leader: Robert E. Green DISCUSSION: NEW DIRECTIONS FOR STANDARDS CONCLUDED FROM WORKSHOP SESSIONS 149 Leader: Norman
Recommended publications
  • Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies
    Graduate Theses, Dissertations, and Problem Reports 2016 Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Savage, Kara A., "Nondestructive Methods to Characterize Rock Mechanical Properties at Low- Temperature: Applications for Asteroid Capture Technologies" (2016). Graduate Theses, Dissertations, and Problem Reports. 6573. https://researchrepository.wvu.edu/etd/6573 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Thesis Submitted to the Statler College of Engineering at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering Aaron Noble, Ph.D., Chair Brijes Mishra, Ph.D. Thomas Evans, Ph.D. Department of Mining Engineering Morgantown, West Virginia 2016 Keywords: Nondestructive Tests, Low-Temperature Rock Mechanics, Schmidt Rebound Hammer, Ultrasonic Pulse Velocity, Asteroid Capture Copyright 2016 Kara A.
    [Show full text]
  • Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures
    NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Geraldine S. Cheok This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.7974 NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Materials and Structural Systems Division Engineering Laboratory Geraldine S. Cheok Intelligent Systems Division Engineering Laboratory December 2013 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director ii ABSTRACT Nondestructive test (NDT) methods and sensor technologies are evaluated in the context of providing input parameters to service life prediction models for reinforced concrete structures. Relevant NDT methods and sensors are identified that are based on diverse technologies including mechanical impact, ultrasonic waves, electromagnetic waves, nuclear, and chemical and electrical methods. The degradation scenarios of reinforcement corrosion, alkali-silica reaction, and cracking are used to identify gaps in available NDT methods for supporting condition assessment and service life prediction. Common gaps are identified, along with strategies for resolving those gaps. iii Disclaimer: Certain commercial products are identified in this paper to specify the materials used and
    [Show full text]
  • The Mathematical Modeling of Magnetostriction
    THE MATHEMATICAL MODELING OF MAGNETOSTRICTION Katherine Shoemaker A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTERS OF ART May 2018 Committee: So-Hsiang Chou, Advisor Kit Chan Tong Sun c 2018 Katherine Shoemaker All rights reserved iii ABSTRACT So-Hsiang Chou, Advisor In this thesis, we study a system of differential equations that are used to model the material deformation due to magnetostriction both theoretically and numerically. The ordinary differential system is a mathematical model for a much more complex physical system established in labo- ratories. We are able to clarify that the phenomenon of double frequency is more delicate than originally suspected from pure physical considerations. It is shown that except for special cases, genuine double frequency does not arise. In particular, simulation results using the lab data is consistent with the experiment. iv I dedicate this work to my family. Even if they don’t understand it, they understand so much more. v ACKNOWLEDGMENTS I would like to express my sincerest gratitude to my advisor Dr. Chou. He has truly inspired me and made my graduate experience worthwhile. His guidance, both intellectually and spiritually, helped me through all the time spent researching and writing this thesis. I could not have asked for a better advisor, or a better instructor and I am truly appreciative of all the support he gave. In addition, I would like to thank the remaining faculty on my thesis committee: Dr. Tong Sun and Dr. Kit Chan, for supporting me through their instruction and mentorship.
    [Show full text]
  • Electromagnetic Induction, Ac Circuits, and Electrical Technologies 813
    CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES 813 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Figure 23.1 This wind turbine in the Thames Estuary in the UK is an example of induction at work. Wind pushes the blades of the turbine, spinning a shaft attached to magnets. The magnets spin around a conductive coil, inducing an electric current in the coil, and eventually feeding the electrical grid. (credit: phault, Flickr) 814 CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Learning Objectives 23.1. Induced Emf and Magnetic Flux • Calculate the flux of a uniform magnetic field through a loop of arbitrary orientation. • Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire. 23.2. Faraday’s Law of Induction: Lenz’s Law • Calculate emf, current, and magnetic fields using Faraday’s Law. • Explain the physical results of Lenz’s Law 23.3. Motional Emf • Calculate emf, force, magnetic field, and work due to the motion of an object in a magnetic field. 23.4. Eddy Currents and Magnetic Damping • Explain the magnitude and direction of an induced eddy current, and the effect this will have on the object it is induced in. • Describe several applications of magnetic damping. 23.5. Electric Generators • Calculate the emf induced in a generator. • Calculate the peak emf which can be induced in a particular generator system. 23.6. Back Emf • Explain what back emf is and how it is induced. 23.7. Transformers • Explain how a transformer works. • Calculate voltage, current, and/or number of turns given the other quantities.
    [Show full text]
  • Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses
    aerospace Article Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses Yi Zhang †, Qiang Shen †, Liqiang Hou † and Shufan Wu * School of Aeronautics and Astronautics, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 200240, China; [email protected] (Y.Z.); [email protected] (Q.S.); [email protected] (L.H.) * Correspondence: [email protected]; Tel.: +86-34208597 † These authors contributed equally to this work. Abstract: The safety of on-orbit satellites is threatened by space debris with large residual angular velocity and the space debris removal is becoming more challenging than before. This paper explores the non-contact despinning and traction problem of high-speed rotating targets and proposes an eddy current brake and traction technology for space targets without any propellant consumption. The principle of the conventional eddy current brake is analyzed in this article and the concept of eddy current brake and traction without propellant is put forward for the first time. Secondly, according to the key technical requirements, a brand-new structure of a satellite generating artificial magnetic field is designed accordingly. Then the control mechanism of eddy current brake and traction without propellant is analyzed qualitatively by simplifying the model and conditions. Then, the magnetic pulse control method is proposed and analyzed quantitatively. Finally, the feasibility of the technology is verified by the numerical simulation method. According to the simulation results, the eddy current brake and traction technology based on magnetic pulses can make the angular speed of target decrease linearly without propellant during the process.
    [Show full text]
  • Use of Components Analysis to Identify Internal Heat in Breast Dynamic Thermal Images
    IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, NOVEMBER 2020 1 Use of components analysis to identify internal heat in breast dynamic thermal images Meir Gershenson Abstract — I suggest a method for biomedical imaging new ones. This process is called angiogenesis. The increase of with heat using principal and independent components blood flow at the cancerous site is associated with an increase analysis. This method produces novel results suggesting in the tissue’s ability to absorb heat. The bio heat transfer physiologic mechanisms. When using thermal imaging to equation describing thermal propagation is given by1 detect breast cancer, the dominant heat signature is of indirect heat transported by the blood away from the tumor i ͟ʚÈʛ ͎ʚr, ͨʛ Ǝ ̽ ∙ ͎ʚÈ, ͨʛ Ǝ͖͋ƍ͋͡ Ɣ 0 location into the skin. Interpretation is usually based on i/ vascular patterns and not by observing the direct ͖͋ Ɣ !͖̽ ʞ͎ʚr, ͨʛ Ǝ ͎ͤʚr, ͨʛʟ (1) cancerous heat. In this new method one uses a sequence of thermal images of the patient’s breast following external Typical values are taken from Azarnoosh J et al. 2 and are temperature change. Data are recorded and analyzed using independent component analysis (ICA) and principal given in Table 1. From the above table the increase in blood component analysis (PCA). ICA separates the image TABLE I sequence into new independent images having a common THRMOPHYSICAL PARAMETERS OF TYPICAL BREAST characteristic time behavior. Using the Brazilian visual lab Density Specific Thermal ωb Qm mastology data set, I observed three types of component heat C conductivity (s-1) *10 -3 (W/m3) images: Images corresponding to a minimum change as a (kg/m3) (J/kg K) ͟ (W/m) function of applied temperature or time, which suggests an Gland 1020 3060 0.322 0.34 – 1.7 700 association with the cancer generated heat, images in which a moderate temperature dependence is associated Tumor 1020 3060 0.564 6 - 16 7792 with veins affected by vasomodulation, and images of Blood 1060 3840 complex time behavior indicating heat absorption due to .
    [Show full text]
  • Guidelines for Pressure Vessel Safety Assessment
    11^^^^ United States Department of Commerce National Institute of Standards and Tectinology NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 DATE DUE Demco. Inc. 38-293 NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa Materials Reliability Division Materials Science and Engineering Laboratory National Institute of Standards and Technology Boulder, CO 80303 Sponsored by Occupational Safety and Health Administration U.S. Department of Labor Washington, DC 20210 Issued April 1990 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1990 of Documents Special Publication 780 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Spec. Publ. 780 75 pages (Apr. 1990) CODEN: NSPUE2 CONTENTS Page ABSTRACT vii 1. INTRODUCTION 1 2. SCOPE AND GENERAL INFORMATION 1 2 . 1 Scope 1 2.2 General Considerations 3 3. PRESSURE VESSEL DESIGN 4 3.1 ASME Code 4 3.1.1 Section VIII of ASME Code 5 3.1.2 Scope of Section VIII 5 3.1.3 Summary of Design Rules and Margins 6 3.1.4 Implementation of ASME Code 9 3.2 API Standard 620 10 3.2.1 Scope of API 620 12 3.2.2 Design Rules 12 3.2.3 Implementation of API 620 12 3.3. Remarks on Design Codes 14 4. DETERIORATION AND FAILURE MODES 14 4.1 Preexisting Causes 14 4.1.1 Design and Construction Related Deficiencies.
    [Show full text]
  • Lecture 30 Motional Emf
    LECTURE 30 MOTIONAL EMF Instructor: Kazumi Tolich Lecture 30 2 ¨ Reading chapter 23-3 & 23-4. ¤ Motional emf ¤ Mechanical work and electrical energy Clicker question: 1 3 Motional emf 4 ¨ As the rod moves to the right at a constant velocity v, the motional emf is given by ΔΦ BΔA lvΔt E = N = = B = Bvl Δt Δt Δt Example: 1 5 ¨ A Boeing KC-135A airplane has a wingspan of L = 39.9 m and flies at constant altitude in a northerly direction with a speed of v = 240 m/s. If the vertical component of the Earth’s magnetic -6 field is Bv = 5.0 × 10 T, and its -6 horizontal component is Bh = 1.4 × 10 T, what is the induced emf between the wing tips? Clicker question: 2 & 3 6 Mechanical and electric powers 7 ¨ Suppose the rod is moving with a constant velocity �. ¨ The mechanical power delivered by the external force is: ¨ Compare this to the electrical power in the light bulb: ¨ Therefore, mechanical power has been converted directly into electrical power. Example: 2 8 ¨ In the figure, let the magnetic field strength be B = 0.80 T, the rod speed be v = 10 m/s, the rod length be l = 0.20 m, and the resistance of the resistor be R = 2.0 Ω. (The resistance of the rod and rails are negligible.) a) Find the induced emf in the circuit. b) Find the induced current in the circuit (including direction). c) Find the force needed to move the rod with constant speed (assuming negligible friction).
    [Show full text]
  • Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches
    AP Corp | (508) 351-6200 | www.a-pcorp.com Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches Both eddy-current sensors as well as inductive switches and displacement sensors have been used for many years, each having their respective advantages when it comes to measuring position and displacement of objects in harsh environments. However, recent advances in eddy-current sensor design, integration and packaging, as well as overall cost reduction, have made these sensors a much more attractive option. This is especially true where high linearity, high-speed measurements and high resolution are critical requirements. Common Inductive Sensors & Switches To appreciate the inherent advantages of eddy-current sensors, relative to inductive switches and displacement sensors, it’s important to first understand the principle of operation of both types. The classic inductive displacement sensor comprises a coil that is wound around a ferromagnetic core. When excited by an alternating current from an oscillator-based driver circuit, the coil generates a magnetic field that is concentrated around the core. The lines of flux interact with the target conductor as it approaches, creating eddy currents that are the reverse of the initial excitation current and have the effect of reducing the voltage across the oscillator. These variations in voltage due to the change in air gap distance are detected and converted to an analog output signal, such as a 4-20mA loop, and then processed upstream to determine displacement. 1 AP Corp | (508) 351-6200 | www.a-pcorp.com In an inductive displacement sensor, a coil is wrapped around a ferromagnetic core and when an alternating current is passed through the coil it generates a magnetic field.
    [Show full text]
  • Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT
    Dipl.-Psych. Marija Bertović Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT BAM-Dissertationsreihe • Band 145 Berlin 2016 Die vorliegende Arbeit entstand an der Bundesanstalt für Materialforschung und -prüfung (BAM). Impressum Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT 2016 Herausgeber: Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8104-72222 E-Mail: [email protected] Internet: www.bam.de Copyright© 2016 by Bundesanstalt für Materialforschung und -prüfung (BAM) Layout: BAM-Referat Z.8 ISSN 1613-4249 ISBN 978-3-9817502-7-0 Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT Vorgelegt von Dipl. -Psych. Marija Bertovic geb. in Ogulin, Kroatien von der Fakultät V – Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Philosophie -Dr. phil.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. phil. Manfred Thüring Gutachter: Prof. Dr. phil. Dietrich Manzey Gutachter: Dr. rer. nat. et Ing. habil. Gerd-Rüdiger Jaenisch Tag der wissenschaftlichen Aussprache: 1 September 2015 Berlin 2015 D83 Abstract Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safety- relevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments.
    [Show full text]
  • Lecture 3: Static Magnetic Solvers
    Lecture 3: Static Magnetic Solvers ANSYS Maxwell V16 Training Manual © 2013 ANSYS, Inc. May 21, 2013 1 Release 14.5 Content A. Magnetostatic Solver a. Selecting the Magnetostatic Solver b. Material Definition c. Boundary Conditions d. Excitations e. Parameters f. Analysis Setup g. Solution Process B. Eddy Current Solver a. Selecting the Eddy Current Solver b. Material Definition c. Boundary Conditions d. Excitations e. Parameters f. Analysis Setup g. Solution Process © 2013 ANSYS, Inc. May 21, 2013 2 Release 14.5 A. Magnetostatic Solver Magnetostatic Solver – In the Magnetostatic Solver, a static magnetic field is solved resulting from a DC current flowing through a coil or due to a permanent magnet – The Electric field inside the current carrying coil is completely decoupled from magnetic field – Losses are only due to Ohmic losses in current carrying conductors – The Magnetostatic solver utilizes an automatic adaptive mesh refinement technique to achieve an accurate and efficient mesh required to meet defined accuracy level (energy error). Magnetostatic Equations – Following two Maxwell’s equations are solved with Magnetostatic solver H J 1 Jz (x, y) ( Az (x, y)) B 0 0r B μ0( H M ) 0 r H 0 M p Maxwell 2D Maxwell 3D © 2013 ANSYS, Inc. May 21, 2013 3 Release 14.5 a. Selecting the Magnetostatic Problem Selecting the Magnetostatic Solver – By default, any newly created design will be set as a Magnetostatic problem – Specify the Magnetostatic Solver by selecting the menu item Maxwell 2D/3D Solution Type – In Solution type window, select Magnetic> Magnetostatic and press OK Maxwell 3D Maxwell 2D © 2013 ANSYS, Inc.
    [Show full text]
  • Methods for Nondestructive Testing of Urban Trees
    Review Methods for Nondestructive Testing of Urban Trees Richard Bruce Allison 1,2,*, Xiping Wang 3,* and Christopher A. Senalik 3 1 Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA 2 Allison Tree Care, LLC, Verona, WI 53593, USA 3 USDA Forest Service, Forest Products Laboratory, Madison, WI 53726-2398, USA; [email protected] * Correspondence: [email protected] (R.B.A); [email protected] (X.W.); Tel.: +1-608-848-2345 (R.B.A); +1-608-231-9461 (X.W.) Received: 21 September 2020; Accepted: 30 October 2020; Published: 16 December 2020 Abstract: Researchers have developed various methods and tools for nondestructively testing urban trees for decay and stability. A general review of these methods includes simple visual inspection, acoustic measuring devices, microdrills, pull testing, ground penetrating radar, x-ray scanning, remote sensing, electrical resistivity tomography and infra-red thermography. Along with these testing methods have come support literature to interpret the data. Keywords: decay; defect; hazard assessment; inspection; nondestructive testing; urban trees 1. Introduction Trees within an urban community provide significant ecological, economic and social benefits, making a city more livable and comfortable for its inhabitants [1]. However, as large physical wooden structures in close proximity to dense populations of people and property, tree failure can cause harm. Urban forest managers use biological and engineering principles to determine a tree’s structural soundness and estimate the probability of failure. Nondestructive testing (NDT) methods by locating and quantifying wood decay and defect are used to measure the physical condition of trees within the urban forest to promote public safety and property protection.
    [Show full text]