Eddy Current Nondestructive Testing NATIONAL BUREAU of STANDARDS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies
Graduate Theses, Dissertations, and Problem Reports 2016 Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Savage, Kara A., "Nondestructive Methods to Characterize Rock Mechanical Properties at Low- Temperature: Applications for Asteroid Capture Technologies" (2016). Graduate Theses, Dissertations, and Problem Reports. 6573. https://researchrepository.wvu.edu/etd/6573 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies Kara A. Savage Thesis Submitted to the Statler College of Engineering at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering Aaron Noble, Ph.D., Chair Brijes Mishra, Ph.D. Thomas Evans, Ph.D. Department of Mining Engineering Morgantown, West Virginia 2016 Keywords: Nondestructive Tests, Low-Temperature Rock Mechanics, Schmidt Rebound Hammer, Ultrasonic Pulse Velocity, Asteroid Capture Copyright 2016 Kara A. -
Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures
NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Geraldine S. Cheok This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.7974 NISTIR 7974 Nondestructive Testing (NDT) and Sensor Technology for Service Life Modeling of New and Existing Concrete Structures Kenneth A. Snyder Li-Piin Sung Materials and Structural Systems Division Engineering Laboratory Geraldine S. Cheok Intelligent Systems Division Engineering Laboratory December 2013 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director ii ABSTRACT Nondestructive test (NDT) methods and sensor technologies are evaluated in the context of providing input parameters to service life prediction models for reinforced concrete structures. Relevant NDT methods and sensors are identified that are based on diverse technologies including mechanical impact, ultrasonic waves, electromagnetic waves, nuclear, and chemical and electrical methods. The degradation scenarios of reinforcement corrosion, alkali-silica reaction, and cracking are used to identify gaps in available NDT methods for supporting condition assessment and service life prediction. Common gaps are identified, along with strategies for resolving those gaps. iii Disclaimer: Certain commercial products are identified in this paper to specify the materials used and -
The Mathematical Modeling of Magnetostriction
THE MATHEMATICAL MODELING OF MAGNETOSTRICTION Katherine Shoemaker A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTERS OF ART May 2018 Committee: So-Hsiang Chou, Advisor Kit Chan Tong Sun c 2018 Katherine Shoemaker All rights reserved iii ABSTRACT So-Hsiang Chou, Advisor In this thesis, we study a system of differential equations that are used to model the material deformation due to magnetostriction both theoretically and numerically. The ordinary differential system is a mathematical model for a much more complex physical system established in labo- ratories. We are able to clarify that the phenomenon of double frequency is more delicate than originally suspected from pure physical considerations. It is shown that except for special cases, genuine double frequency does not arise. In particular, simulation results using the lab data is consistent with the experiment. iv I dedicate this work to my family. Even if they don’t understand it, they understand so much more. v ACKNOWLEDGMENTS I would like to express my sincerest gratitude to my advisor Dr. Chou. He has truly inspired me and made my graduate experience worthwhile. His guidance, both intellectually and spiritually, helped me through all the time spent researching and writing this thesis. I could not have asked for a better advisor, or a better instructor and I am truly appreciative of all the support he gave. In addition, I would like to thank the remaining faculty on my thesis committee: Dr. Tong Sun and Dr. Kit Chan, for supporting me through their instruction and mentorship. -
Electromagnetic Induction, Ac Circuits, and Electrical Technologies 813
CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES 813 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Figure 23.1 This wind turbine in the Thames Estuary in the UK is an example of induction at work. Wind pushes the blades of the turbine, spinning a shaft attached to magnets. The magnets spin around a conductive coil, inducing an electric current in the coil, and eventually feeding the electrical grid. (credit: phault, Flickr) 814 CHAPTER 23 | ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES Learning Objectives 23.1. Induced Emf and Magnetic Flux • Calculate the flux of a uniform magnetic field through a loop of arbitrary orientation. • Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire. 23.2. Faraday’s Law of Induction: Lenz’s Law • Calculate emf, current, and magnetic fields using Faraday’s Law. • Explain the physical results of Lenz’s Law 23.3. Motional Emf • Calculate emf, force, magnetic field, and work due to the motion of an object in a magnetic field. 23.4. Eddy Currents and Magnetic Damping • Explain the magnitude and direction of an induced eddy current, and the effect this will have on the object it is induced in. • Describe several applications of magnetic damping. 23.5. Electric Generators • Calculate the emf induced in a generator. • Calculate the peak emf which can be induced in a particular generator system. 23.6. Back Emf • Explain what back emf is and how it is induced. 23.7. Transformers • Explain how a transformer works. • Calculate voltage, current, and/or number of turns given the other quantities. -
Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses
aerospace Article Non-Propellant Eddy Current Brake and Traction in Space Using Magnetic Pulses Yi Zhang †, Qiang Shen †, Liqiang Hou † and Shufan Wu * School of Aeronautics and Astronautics, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 200240, China; [email protected] (Y.Z.); [email protected] (Q.S.); [email protected] (L.H.) * Correspondence: [email protected]; Tel.: +86-34208597 † These authors contributed equally to this work. Abstract: The safety of on-orbit satellites is threatened by space debris with large residual angular velocity and the space debris removal is becoming more challenging than before. This paper explores the non-contact despinning and traction problem of high-speed rotating targets and proposes an eddy current brake and traction technology for space targets without any propellant consumption. The principle of the conventional eddy current brake is analyzed in this article and the concept of eddy current brake and traction without propellant is put forward for the first time. Secondly, according to the key technical requirements, a brand-new structure of a satellite generating artificial magnetic field is designed accordingly. Then the control mechanism of eddy current brake and traction without propellant is analyzed qualitatively by simplifying the model and conditions. Then, the magnetic pulse control method is proposed and analyzed quantitatively. Finally, the feasibility of the technology is verified by the numerical simulation method. According to the simulation results, the eddy current brake and traction technology based on magnetic pulses can make the angular speed of target decrease linearly without propellant during the process. -
Use of Components Analysis to Identify Internal Heat in Breast Dynamic Thermal Images
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, NOVEMBER 2020 1 Use of components analysis to identify internal heat in breast dynamic thermal images Meir Gershenson Abstract — I suggest a method for biomedical imaging new ones. This process is called angiogenesis. The increase of with heat using principal and independent components blood flow at the cancerous site is associated with an increase analysis. This method produces novel results suggesting in the tissue’s ability to absorb heat. The bio heat transfer physiologic mechanisms. When using thermal imaging to equation describing thermal propagation is given by1 detect breast cancer, the dominant heat signature is of indirect heat transported by the blood away from the tumor i ͟ʚÈʛ ͎ʚr, ͨʛ Ǝ ̽ ∙ ͎ʚÈ, ͨʛ Ǝ͖͋ƍ͋͡ Ɣ 0 location into the skin. Interpretation is usually based on i/ vascular patterns and not by observing the direct ͖͋ Ɣ !͖̽ ʞ͎ʚr, ͨʛ Ǝ ͎ͤʚr, ͨʛʟ (1) cancerous heat. In this new method one uses a sequence of thermal images of the patient’s breast following external Typical values are taken from Azarnoosh J et al. 2 and are temperature change. Data are recorded and analyzed using independent component analysis (ICA) and principal given in Table 1. From the above table the increase in blood component analysis (PCA). ICA separates the image TABLE I sequence into new independent images having a common THRMOPHYSICAL PARAMETERS OF TYPICAL BREAST characteristic time behavior. Using the Brazilian visual lab Density Specific Thermal ωb Qm mastology data set, I observed three types of component heat C conductivity (s-1) *10 -3 (W/m3) images: Images corresponding to a minimum change as a (kg/m3) (J/kg K) ͟ (W/m) function of applied temperature or time, which suggests an Gland 1020 3060 0.322 0.34 – 1.7 700 association with the cancer generated heat, images in which a moderate temperature dependence is associated Tumor 1020 3060 0.564 6 - 16 7792 with veins affected by vasomodulation, and images of Blood 1060 3840 complex time behavior indicating heat absorption due to . -
Guidelines for Pressure Vessel Safety Assessment
11^^^^ United States Department of Commerce National Institute of Standards and Tectinology NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY Research Information Center Gaithersburg, MD 20899 DATE DUE Demco. Inc. 38-293 NIST Special Publication 780 Guidelines for Pressure Vessel Safety Assessment Sumio Yukawa Materials Reliability Division Materials Science and Engineering Laboratory National Institute of Standards and Technology Boulder, CO 80303 Sponsored by Occupational Safety and Health Administration U.S. Department of Labor Washington, DC 20210 Issued April 1990 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent and Technology Washington: 1990 of Documents Special Publication 780 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Spec. Publ. 780 75 pages (Apr. 1990) CODEN: NSPUE2 CONTENTS Page ABSTRACT vii 1. INTRODUCTION 1 2. SCOPE AND GENERAL INFORMATION 1 2 . 1 Scope 1 2.2 General Considerations 3 3. PRESSURE VESSEL DESIGN 4 3.1 ASME Code 4 3.1.1 Section VIII of ASME Code 5 3.1.2 Scope of Section VIII 5 3.1.3 Summary of Design Rules and Margins 6 3.1.4 Implementation of ASME Code 9 3.2 API Standard 620 10 3.2.1 Scope of API 620 12 3.2.2 Design Rules 12 3.2.3 Implementation of API 620 12 3.3. Remarks on Design Codes 14 4. DETERIORATION AND FAILURE MODES 14 4.1 Preexisting Causes 14 4.1.1 Design and Construction Related Deficiencies. -
Lecture 30 Motional Emf
LECTURE 30 MOTIONAL EMF Instructor: Kazumi Tolich Lecture 30 2 ¨ Reading chapter 23-3 & 23-4. ¤ Motional emf ¤ Mechanical work and electrical energy Clicker question: 1 3 Motional emf 4 ¨ As the rod moves to the right at a constant velocity v, the motional emf is given by ΔΦ BΔA lvΔt E = N = = B = Bvl Δt Δt Δt Example: 1 5 ¨ A Boeing KC-135A airplane has a wingspan of L = 39.9 m and flies at constant altitude in a northerly direction with a speed of v = 240 m/s. If the vertical component of the Earth’s magnetic -6 field is Bv = 5.0 × 10 T, and its -6 horizontal component is Bh = 1.4 × 10 T, what is the induced emf between the wing tips? Clicker question: 2 & 3 6 Mechanical and electric powers 7 ¨ Suppose the rod is moving with a constant velocity �. ¨ The mechanical power delivered by the external force is: ¨ Compare this to the electrical power in the light bulb: ¨ Therefore, mechanical power has been converted directly into electrical power. Example: 2 8 ¨ In the figure, let the magnetic field strength be B = 0.80 T, the rod speed be v = 10 m/s, the rod length be l = 0.20 m, and the resistance of the resistor be R = 2.0 Ω. (The resistance of the rod and rails are negligible.) a) Find the induced emf in the circuit. b) Find the induced current in the circuit (including direction). c) Find the force needed to move the rod with constant speed (assuming negligible friction). -
Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches
AP Corp | (508) 351-6200 | www.a-pcorp.com Learn Why Eddy-Current Sensors Are Now Replacing Inductive Sensors and Switches Both eddy-current sensors as well as inductive switches and displacement sensors have been used for many years, each having their respective advantages when it comes to measuring position and displacement of objects in harsh environments. However, recent advances in eddy-current sensor design, integration and packaging, as well as overall cost reduction, have made these sensors a much more attractive option. This is especially true where high linearity, high-speed measurements and high resolution are critical requirements. Common Inductive Sensors & Switches To appreciate the inherent advantages of eddy-current sensors, relative to inductive switches and displacement sensors, it’s important to first understand the principle of operation of both types. The classic inductive displacement sensor comprises a coil that is wound around a ferromagnetic core. When excited by an alternating current from an oscillator-based driver circuit, the coil generates a magnetic field that is concentrated around the core. The lines of flux interact with the target conductor as it approaches, creating eddy currents that are the reverse of the initial excitation current and have the effect of reducing the voltage across the oscillator. These variations in voltage due to the change in air gap distance are detected and converted to an analog output signal, such as a 4-20mA loop, and then processed upstream to determine displacement. 1 AP Corp | (508) 351-6200 | www.a-pcorp.com In an inductive displacement sensor, a coil is wrapped around a ferromagnetic core and when an alternating current is passed through the coil it generates a magnetic field. -
Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT
Dipl.-Psych. Marija Bertović Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT BAM-Dissertationsreihe • Band 145 Berlin 2016 Die vorliegende Arbeit entstand an der Bundesanstalt für Materialforschung und -prüfung (BAM). Impressum Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT 2016 Herausgeber: Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Telefon: +49 30 8104-0 Telefax: +49 30 8104-72222 E-Mail: [email protected] Internet: www.bam.de Copyright© 2016 by Bundesanstalt für Materialforschung und -prüfung (BAM) Layout: BAM-Referat Z.8 ISSN 1613-4249 ISBN 978-3-9817502-7-0 Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT Vorgelegt von Dipl. -Psych. Marija Bertovic geb. in Ogulin, Kroatien von der Fakultät V – Verkehrs- und Maschinensysteme der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Philosophie -Dr. phil.- genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. phil. Manfred Thüring Gutachter: Prof. Dr. phil. Dietrich Manzey Gutachter: Dr. rer. nat. et Ing. habil. Gerd-Rüdiger Jaenisch Tag der wissenschaftlichen Aussprache: 1 September 2015 Berlin 2015 D83 Abstract Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safety- relevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments. -
Lecture 3: Static Magnetic Solvers
Lecture 3: Static Magnetic Solvers ANSYS Maxwell V16 Training Manual © 2013 ANSYS, Inc. May 21, 2013 1 Release 14.5 Content A. Magnetostatic Solver a. Selecting the Magnetostatic Solver b. Material Definition c. Boundary Conditions d. Excitations e. Parameters f. Analysis Setup g. Solution Process B. Eddy Current Solver a. Selecting the Eddy Current Solver b. Material Definition c. Boundary Conditions d. Excitations e. Parameters f. Analysis Setup g. Solution Process © 2013 ANSYS, Inc. May 21, 2013 2 Release 14.5 A. Magnetostatic Solver Magnetostatic Solver – In the Magnetostatic Solver, a static magnetic field is solved resulting from a DC current flowing through a coil or due to a permanent magnet – The Electric field inside the current carrying coil is completely decoupled from magnetic field – Losses are only due to Ohmic losses in current carrying conductors – The Magnetostatic solver utilizes an automatic adaptive mesh refinement technique to achieve an accurate and efficient mesh required to meet defined accuracy level (energy error). Magnetostatic Equations – Following two Maxwell’s equations are solved with Magnetostatic solver H J 1 Jz (x, y) ( Az (x, y)) B 0 0r B μ0( H M ) 0 r H 0 M p Maxwell 2D Maxwell 3D © 2013 ANSYS, Inc. May 21, 2013 3 Release 14.5 a. Selecting the Magnetostatic Problem Selecting the Magnetostatic Solver – By default, any newly created design will be set as a Magnetostatic problem – Specify the Magnetostatic Solver by selecting the menu item Maxwell 2D/3D Solution Type – In Solution type window, select Magnetic> Magnetostatic and press OK Maxwell 3D Maxwell 2D © 2013 ANSYS, Inc. -
Methods for Nondestructive Testing of Urban Trees
Review Methods for Nondestructive Testing of Urban Trees Richard Bruce Allison 1,2,*, Xiping Wang 3,* and Christopher A. Senalik 3 1 Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53706, USA 2 Allison Tree Care, LLC, Verona, WI 53593, USA 3 USDA Forest Service, Forest Products Laboratory, Madison, WI 53726-2398, USA; [email protected] * Correspondence: [email protected] (R.B.A); [email protected] (X.W.); Tel.: +1-608-848-2345 (R.B.A); +1-608-231-9461 (X.W.) Received: 21 September 2020; Accepted: 30 October 2020; Published: 16 December 2020 Abstract: Researchers have developed various methods and tools for nondestructively testing urban trees for decay and stability. A general review of these methods includes simple visual inspection, acoustic measuring devices, microdrills, pull testing, ground penetrating radar, x-ray scanning, remote sensing, electrical resistivity tomography and infra-red thermography. Along with these testing methods have come support literature to interpret the data. Keywords: decay; defect; hazard assessment; inspection; nondestructive testing; urban trees 1. Introduction Trees within an urban community provide significant ecological, economic and social benefits, making a city more livable and comfortable for its inhabitants [1]. However, as large physical wooden structures in close proximity to dense populations of people and property, tree failure can cause harm. Urban forest managers use biological and engineering principles to determine a tree’s structural soundness and estimate the probability of failure. Nondestructive testing (NDT) methods by locating and quantifying wood decay and defect are used to measure the physical condition of trees within the urban forest to promote public safety and property protection.