Biological Interactions Between Fish and Jellyfish in the Northwestern Mediterranean

Total Page:16

File Type:pdf, Size:1020Kb

Biological Interactions Between Fish and Jellyfish in the Northwestern Mediterranean Biological interactions between fish and jellyfish in the northwestern Mediterranean Uxue Tilves Barcelona 2018 Biological interactions between sh and jellysh in the northwestern Mediterranean Interacciones biológicas entre meduas y peces y sus implicaciones ecológicas en el Mediterráneo Noroccidental Uxue Tilves Matheu Memoria presentada para optar al grado de Doctor por la Universitat Politècnica de Catalunya (UPC), Programa de doctorado en Ciencias del Mar (RD 99/2011). Tesis realizada en el Institut de Ciències del Mar (CSIC). Directora: Dra. Ana Maria Sabatés Freijó (ICM-CSIC) Co-directora: Dra. Verónica Lorena Fuentes (ICM-CSIC) Tutor/Ponente: Dr. Manuel Espino Infantes (UPC) Barcelona is student has been supported by a pre-doctoral fellowship of the FPI program (Spanish Ministry of Economy and Competitiveness). e research carried out in the present study has been developed in the frame of the FISHJELLY project, CTM2010-18874 and CTM2015- 68543-R. Cover design by Laura López. Visual design by Eduardo Gil. esis contents THESIS CONTENTS Sum m a r y 9 Gen eral In tro d uctio n 11 Obje ctive s a n d the sis o utlin e 30 Digestion times and predation potentials of Pelagia noctiluca eating CHAPTER 1 sh larvae an d cop ep od s in the NW Med iterran33 ean Sea Natural diet and predationPelagia noctiluca im pactso n fis hof CHAPTER 2 eggs an d larvae in the NW Med iterran ean57 Tro p hic in teractio n s Pelagiao f the noctiluca jellysh i n t he NW Mediterranean: evidence from stable isotope signatures and fatty CHAPTER 3 a ci d co m p o s i t i o n 79 As s o ci a t i o n s be t we e n s h a n d je l l ys h i n t he NW CHAPTER 4 Med iterran ean 105 Gen eral D iscussio n 131 Ge n e ra l Co n clusio n 141 Ackn o wled gem en ts 145 Ap p e n d i ce s 149 Summary 9 SUMMARY Jellysh are important components of marine ecosystems, being a key link between lower and higher trophic levels. Jellysh blooms occur sporadically and unpredictably in coastal areas and oen have important socio-economic consequences for sheries and tourism. is PhD thesis addresses some questions regarding the potential impact, positive and/or negative, that jellysh have on sh populations in the Catalan coast (NW Mediterranean). Firstly, the natural diet of one of the most abundant jellysh in the aa, rethe scyphomedusa Pelagia noctiluca , was studied analyzing its gut contents and conducting biomarker analyses (stable isotopes and fatty acids). ese results were complemented with laboratory experiments to calculate their digestion times and also with the records of sh larvae and jellysh abundances in the eld. All together, these results were used to estimate the potential feeding impact ofP. noctiluca on sh eggs and larvae and competition between both groups of organisms. Results suggest that the potential consumption of ichthyoplankton by the jellysh and competition between them may be high. Secondly, the association between the jellysh Rhizostoma pulmo and Cotylorhiza tuberculata and the carangid shes Trachurus mediterraneus, Trachurus trachurus and Caranx rhonchus was studied in detail. For this purpuse, eld observations of jellysh and their hosted sh were carried out during Summary 10 summer to describe sh behavior. Moreover, Las medusas son componentes laboratory experiments were performed to importantes de los ecosistemas marinos ya determine the survival capability of the jellysh- que son un vínculo clave entre el zooplancton associated sh to the venom of their hosts. más pequeño y los niveles trócos superiores. Finally, biomarker analyses were conducted to L as proliferaciones de medusas ocurren understand the signicance of the association. esporádica e impredeciblemente en áreas All this information demonstrated the benet costeras y con frecuencia tienen importantes of the association for the sh. consecuencias socioeconómicas para la pesca y el turismo. Esta tesis doctoral aborda algunas cuestiones relacionadas con el potencial impacto de las medusas, tanto positivo como negativo, sobre las poblaciones de peces en la costa catalana (NO Mediterráneo). En primer lugar, se estudió la dieta natural de una de las medusas más abundante en la zona,Pelagia noctiluca , analizando su contenido estomacal y sus biomarcadores (isótopos estables y ácidos grasos). Estos resultados se complementaron con sus tiempos de digestión (obtenidos mediante experimentos de laboratorio) y también con las abundancias en mar abierto de larvas de peces y medusas. En conjunto, estos resultados demostraron que el potencial impacto de depredación deP. noctiluca sobre huevos y larvas de peces es alto y que existe una probable competencia entre ambos grupos por el alimento. En segundo lugar, se estudió la asociación entre las medusasRhizostoma pulmo y Cotylorhiza tuberculata y los peces carángidos Trachurus mediterraneus , Trachurus trachurus y Caranx rhonchus . Para ello, se estudió durante el perí odo de verano el comportamiento en el mar de los peces asociados. Además, se realizaron experimentos de laboratorio para determinar la capacidad de supervivencia de estos peces al veneno de sus medusas antrionas. Finalmente, se realizaron análisis de biomarcadores para comprender la importancia de estas asociaciones. Toda esta información demostró el benecio obtenido por los peces cuando se asocian a medusas. General Introduction 11 GENERAL INTRODUCTION Gelatinous zooplankton: what is it? Sin ce gelatinous zooplankton refers to several groups of planktonic organisms, taxonomically and functionally diverse, and taking into account that dierent authors do not always refer to the same groups using this denition, it is important to dene which groups we indicate in this work. e term gelatinous zooplankton comprises those organisms with similarities in their body (high water content and gelatinous consistency) and in having a planktonic stage within their life cycle. us, this terminology includes pelagic cnidarians and ctenophores (comb jellies), and pelagic tunicates (invertebrate chordates: salps, doliolids and pyrosomes). What is called jellysh refers to the pelagic stages of four classes of the Cnidaria subphyla: Hydrozoa, Cubozoa, Scyphozoa and Staurozoa. As the rest of the members of the phylum Cnidaria, all of them possess mechanoreceptor cells called cnidocytes (stinging cells) that are used for defense/oense purposes when cnidarians interact with other organisms. Gelatinous zooplankton is an important component of pelagic ecosystems (Mills 1995, Purcell et al. 2007), because they play a key role as predators and competitors that can modulate the structure and dynamics of planktonic food webs (Purcell 1997, Purcell & Arai 2001, Arai General Introduction 12 2005). ey have been considered a trophic 2012, Condon et al. 2012). Whether there is an dead-ends for decades (Sommer et al. 2002, increase of jellysh blooms or not, evidences Lynam et al. 2006) due to their high water (> suggest that jellysh populations experienced 97%) and low carbon (up to 2.9%) content prolonged periods of high abundance (Condon (Lucas et al. 2011), but nowadays several et al. 2013). evidences highlighted the importance of these organisms as prey for diverse marine predators, Dierent mechanisms are thought to be such as sea birds, invertebrates, leatherback responsible for the upward trend of gelatinous sea turtles and an underestimated number of zooplankton and, although the increasing sh species (Arai 1988, Purcell & Arai 2001, pattern may be local, the mechanisms involved Arai 2005). As an example, Pelagia noctiluca could act at a global scale. ese factors has been found to be part of the diet of the shinclude climate change, which may enhance Boops boops in the Mediterranean (Milisenda et reproduction rates and favour species wider al. 2014), although the scyphomedusae have 20 dispersion (Brodeur et al. 1999, Lynam et al. times less energy density than the co-occurring 2004, Purcell 2005, Attrill 2007); introduction sh (Cardona et al. 2012). Another example is of alien species (Shiganova 1998, Graham the bristle worm,Hermodice carunculata, which & Bahya 2007); eutrophication, which may has been indicated as a consumer Cassiopeaof increase nutrients and zooplankton availability spp. in the Bahamas (Stoner & Layman 2015). (Arai 2005, Purcell & Benović 1999); habitat modication, by increasing suitable substrates Jellysh blooms for polyp settlement (Duarte et al. 2013); and removal of jellysh predators by overshing Most jellysh are considered as planktonic (Purcell & Benović 1999, Lynam et al. 2006). organisms, which means they live suspended in the water column with limited movements Increase of gelatinous organisms is against the currents and occasionally form considered as a potential indicator of ecological “blooms” (rapid increases in abundance within changes in marine ecosystems (Mills 2001, a short period of time) (Graham et al. 2001, Purcell 2005, Purcell et al. 2007, Richardson Hamner & Dawson 2009). When these rapid et al. 2009) usually dominated by forage shes changes in jellysh abundance are due to a rapid (Boero 2013). Jellysh populations present population growth, they are considered a “true extended periods of high abundance (Condon bloom” (hereaer called simply bloom) while et al. 2013) and in ecosystems supporting major the re-distribution or re-dispersion of a stable forage sh sheries these periods of high jellysh population by environmental forcing is called abundance coincide with low abundance of “apparent bloom” (Graham et al. 2001). Jellysh sh (Decker et al. 2014, Brodeur et al. 2014, blooms appear to be increasing in number and Mianzan et al. 2014) suggesting a jellysh-sh frequency in some areas of the world (Brodeur replacement cycles (Robinson et al. 2014). It et al. 2002, Purcell 2005, Attrill et al. 2007), but should be pointed out that jellysh are known there is still controversy about their increase to be able to survive in degraded environments at a global scale (Mills 2001, Brotz & Pauly due to dierent physiological and biological General Introduction 13 attributes that give them an advantage over other animals (including shes) and could explain the shi in ecosystem structure (Richardson et al.
Recommended publications
  • Investigation of Maryland's Coastal Bays and Atlantic Ocean Finfish
    Investigation of Maryland’s Coastal Bays and Atlantic Ocean Finfish Stocks 2014 Final Report Prepared by: Linda Barker, Steve Doctor, Carrie Kennedy, Gary Tyler, Craig Weedon, and Angel Willey Federal Aid Project No. F-50-R-23 UNITED STATES DEPARTMENT OF INTERIOR Fish & Wildlife Service Division of Federal Assistance Region 5 Annual Report___X_____ Final Report (5-Year)_______ Proposal________ Grantee: Maryland Department of Natural Resources – Fisheries Service Grant No.: F-50-R Segment No.: 23 Title: Investigation of Maryland’s Coastal Bays and Atlantic Ocean Finfish Stocks Period Covered: January 1, 2014 through December 31, 2014 Prepared By: Carrie Kennedy, Principal Investigator, Manager Coastal Program Date Approved By: Tom O’Connell, Director, Fisheries Service Date Approved By: Anissa Walker, Appointing Authority Date Date Submitted: May 30, 2015 ____________ Statutory Funding Authority: Sport Fish Restoration X CFDA #15.605 State Wildlife Grants (SWG) Cooperative Management Act CFDA #15.634 Acknowledgements The Coastal Bays Fisheries Investigation has been sampling fishes in the Coastal Bays for 42 years. Although the survey began in 1972, it did not have dedicated funding until 1989. Consistent funding allowed staff to specifically dedicate time and make improvements to the sampling protocol that resulted in significant beneficial contributions to the fisheries of the Coastal Bays. We would like to thank the past and present staff that dedicated their careers to the Coastal Bays Fisheries Investigation for having the knowledge, initiative, and dedication to get it started and maintained. Additionally, staff of the Coastal Fisheries Program would like to thank all of the Maryland Department of Natural Resources (MDNR) Fisheries Service employees who assisted with the operations, field work, and annual reports over the years whether it was for a day or a few months.
    [Show full text]
  • Biological Interactions Between Fish and Jellyfish in the Northwestern Mediterranean
    Biological interactions between fish and jellyfish in the northwestern Mediterranean Uxue Tilves Barcelona 2018 Biological interactions between fish and jellyfish in the northwestern Mediterranean Interacciones biológicas entre meduas y peces y sus implicaciones ecológicas en el Mediterráneo Noroccidental Uxue Tilves Matheu Memoria presentada para optar al grado de Doctor por la Universitat Politècnica de Catalunya (UPC), Programa de doctorado en Ciencias del Mar (RD 99/2011). Tesis realizada en el Institut de Ciències del Mar (CSIC). Directora: Dra. Ana Maria Sabatés Freijó (ICM-CSIC) Co-directora: Dra. Verónica Lorena Fuentes (ICM-CSIC) Tutor/Ponente: Dr. Manuel Espino Infantes (UPC) Barcelona This student has been supported by a pre-doctoral fellowship of the FPI program (Spanish Ministry of Economy and Competitiveness). The research carried out in the present study has been developed in the frame of the FISHJELLY project, CTM2010-18874 and CTM2015- 68543-R. Cover design by Laura López. Visual design by Eduardo Gil. Thesis contents THESIS CONTENTS Summary 9 General Introduction 11 Objectives and thesis outline 30 Digestion times and predation potentials of Pelagia noctiluca eating CHAPTER1 fish larvae and copepods in the NW Mediterranean Sea 33 Natural diet and predation impacts of Pelagia noctiluca on fish CHAPTER2 eggs and larvae in the NW Mediterranean 57 Trophic interactions of the jellyfish Pelagia noctiluca in the NW Mediterranean: evidence from stable isotope signatures and fatty CHAPTER3 acid composition 79 Associations between fish and jellyfish in the NW CHAPTER4 Mediterranean 105 General Discussion 131 General Conclusion 141 Acknowledgements 145 Appendices 149 Summary 9 SUMMARY Jellyfish are important components of marine ecosystems, being a key link between lower and higher trophic levels.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Introduction to Fisheries Management
    LECTURE NNOTE ON FIS 201 (2Units) INTRODUCTION TO FISHERIES MANAGEMENT PREPARED BY DR (MRS) IKENWEIWE N. BOLATITO AQUACULTURE AND FISHERIES DEPARTMENT UNIVERSITY OF AGRICULTURE,ABEOKUTA 1 INTRODUCTION ICTHYOLOGY is the scientific study of fish. Fish, because of the possession of notochord belong to the phylum chordata. They are most numerous vertebrates. About 20,000 species are known to science, and compare to other classes, aves 98,600species and mammals 8600species, reptiles 6,000 spandamphibians 2,000species.Fish also in various shape and forms from the smallest niamoy17mmT.L the giant whale shark that measures 15m and heights 25 tonnes. Fish are poikilothermic cold blooded animals that live in aquatic environment Most fish , especially the recent species, have scales on their body and survive in aquatic environment by the use of gills for respiration. Another major characteristic of a typical fish is the presence of gill slits which cover the gills on the posterior. (1) FISH TAXONOMY. Everyone is at heart a taxonomist whether by virtue or necessity or because of mere curiosity. 1. To know/identify the difference component in a fish population. That is to name and arrange. 2. To study the population dynamics in a population. (Number of each species in a population.) 3. Important in fish culture propagation – to know the species of fish that is most suitable for culture. 4. To exchange information to people in other parts of the world living known that both are dealing on the same species. 5. Reduce confusion as same Latin word generally acceptable worldwide are used while vernacular names differ form one location to another.
    [Show full text]
  • Translation Series No. 1290
    FISHERIES RESEARCH BOARD OF CANADA Translation Series No. 1290 Practice of fishing and technology of the processing of fish and other marine products. By Bogdanov, D.V., Yu.A. Korzhova, N.P. Kornilov, L.I. Leonova, T.G. Lyubimova, A.L. Obvintsev, E.S. Prosvirov, N.E. Sarnikov, E.S. Terekhov, and N.S. Khromov Original title: Tekhnika lova i tekhnologiya obrabotki ryby i nerybnykh oblektov promysla. Razdel III. From: Mersikanskii Zaliv. (Spravochnoe posobie dlya rabotnikov e rybnoi promyshlennosti). Vsesoyuznyi Nauchno-Issledovatel'- - skii Institut Morskoyo_Rybnogo Khozyaistva i Okeanografii • (VNIRO). Publ. by Izd. "Pishchevaya Promyshlennost'", Moscow, : 135-89, 1967. Translated by the Translation Bureau(HS) Foreign LanguageS Division Department of the Secretary of State of , Canada Fisheries Research Board of Canada Halifax Laboratory Halifax, N.S. 1969 • 111 pages typescript (3 I , DEPARTMENT OF THE SECRETARY OF STATE SECRÉTARIAT D'ÉTAT TRANSLATION BUREAU : 1›,e•r - BUREAU DES TRADUCTIONS FOREIGN LANGUAGES '1d/e»0£ir DIVISION DES LANGUES DIVISION CANADA ÉTRANGÈRES TRANSLATED FROM - TRADUCTION DE INTO - EN Russian English • AUTHOR - AUTEUR D.V. Bogdanov, Yu.A. Koréhova, N.P. Kornilov, T.I. Leonova, T.G. Lyubimova, A.L. Obvintsev, E.S.Prosvirov, N.E. Salinikov, E.S.Terekhov, N.S. Khramov. TITLE IN ENGLISH - TITRE ANGLAIS Practice of fishing and technology of the processing of fish and other marine products. Ti tle. in foreign language (transliterate foreign, characters) Tekhnika lova i tekhnologiya obrabotki ryby i nerybnykh ob'ektov promysla. Razdel III. R EFERENCE. IN FOREIGN I,ANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIGN CHARACTERS. REFÉRENCE EN LANGUE ETRANGERE (NOM DU LIVRE OU PUBLICATION), AU COMPLET.
    [Show full text]
  • Direct Identification of Fish Species by Surface Molecular Transferring
    Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020 Supplementary materials for Direct Identification of Fish Species by Surface Molecular Transferring Mingke Shao, Hongyan Bi* College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, 201306 Shanghai, China * To whom correspondence should be addressed. E-mail address: [email protected] E-mail address for the other authors: [email protected] S1 S1. Photos and information on the analyzed fish samples Fig. S1. Photos of fishes analyzed in the present study: (A) Oreochromis mossambicus (B) Epinephelus rivulatus (C) Mugil cephalus; (D) Zeus faber (E) Trachinotus ovatus (F) Brama japonica (G) Larimichthys crocea (H) Larimichthys polyactis (I) Pampus argenteus. Scale bar in each photo represents 1 cm. Table S1. List of the scientific classification of fishes analyzed in the study. The classification of fishes refers to https://www.fishbase.de/. Binomial Abbreviatio English Chinese name n common Scientific classification name (Scientific name name) Actinopterygii (class) > Perciformes (order) > Japanese Brama Brama BJ Bramidae (family) > Wufang japonica japonica Brama (genus) > B. brama (species) Actinopterygii (class) > Silver Scombriformes(order) > Baichang pomfret; Pampus PA ( Fish White argenteus Stromateidae family) > pomfret Pampus (genus) > P. argenteus (species) Haifang Zeus faber Actinopterygii (class) > (commonly Linnaeu; Zeus faber ZF Zeiformes (order) > called: John Dory; Zeidae (family) > S2 Yueliang target perch Zeus (genus) > Fish) Z. faber (species) Actinopteri (class) > OM Cichliformes (order) > Mozambique Oreochromis Cichlidae (family) > Luofei Fish tilapia mossambicus Oreochromis (genus) > O.mossambicus (species) Actinopterygii (class) > MC Mugiliformes (order) Xiaozhai Flathead Mugil Mugilidae (family) > Fish grey mullet cephalus Mugil (genus) > M.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • Xiphias Gladius Linnaeus, 1758 Synonyms
    click for previous page - 107 - BONY FISHES XIPHIIDAE Xiphias gladius Linnaeus, 1758 Synonyms : Xiphias estara Phillipps, 1932 Xiphias gladius estara : Whitley, 1968 Loc. names : Ghori (Sin); Asp (Bal) Broadbill swordfish (En) FAO names : En - Swordfish Fr- Espadon Sp - Pez espada Size : Max.: 444 cm (total length); com- mon to 300 cm Fishing gear : Caught with longlines Habitat and biology : Epipelagic, oceanic, sometimes in coastal waters. Highly migratory, does not form schools. Found above the thermocline but also to depths of 800 m. Feeds mainly on schooling fishes, crustaceans and cephalopods Interest to fisheries : The flesh of this species is oily and tasty and appreciated worldwide. The catches of swordfish in Pakistan totalled 200 t in 1983 (see FAO Yearbook of Fishery Statistics, 1983) STROMATEIDAE Loc. names : Achopitho, Sufaid-poplet (Sin); Tighlum, Pithoo, Wanag, etc. (Bal) FAO names: En - Silver pomfrets Fr - Ailerons Sp - Palometones Size : Max.: 60 cm; most common between 20 and 30 cm Fishing gear : Taken with bottom trawls, occasionally with driftnets and bottom gillnets . Main fishing, seasons are January, February, May and September to December along the Baluchistan coast Habitat and biology : Campus argenteus is found in coastal waters from 5 to 100 m depth and it is usually associated with prawns, species of Nemipterus and Leiognathus . Pampus chinensis is found in shallow waters, sometimes in estuaries. They both feed on ctenophores, salps, medusae, etc. Sexually ripe specimens of P. argenteus found in July and October along the Baluchistan coast The Handbook of Fisheries Statistics of Pakistan (1973-83) reports annual catches of Pampus Interest to fisheries : argenteus ranging from 2 694 t (1980) to 6 276 t (1979) with an average of 4 195 t.
    [Show full text]