International Journal of Humanoid Robotics Vol. 13, No. 1 (2016) 1650011 (28 pages) °c World Scienti¯c Publishing Company DOI: 10.1142/S0219843616500110 Whole-Body Balancing Walk Controller for Position Controlled Humanoid Robots Seung-Joon Yi GRASP Laboratory, University of Pennsylvania, Philadelphia PA 19104, USA
[email protected] Byoung-Tak Zhang BI Laboratory, Seoul National University, Seoul, Korea
[email protected] Dennis Hong RoMeLa Laboratory, University of California, Los Angeles CA 90095, USA
[email protected] Daniel D. Lee GRASP Laboratory,University of Pennsylvania, Philadelphia PA 19104, USA
[email protected] Received 25 May 2015 Accepted 13 January 2016 Published 17 March 2016 Int. J. Human. Robot. 2016.13. Downloaded from www.worldscientific.com by SEOUL NATIONAL UNIVERSITY on 06/18/16. For personal use only. Bipedal humanoid robots are intrinsically unstable against unforeseen perturbations. Conven- tional zero moment point (ZMP)-based locomotion algorithms can reject perturbations by incorporating sensory feedback, but they are less e®ective than the dynamic full body behaviors humans exhibit when pushed. Recently, a number of biomechanically motivated push recovery behaviors have been proposed that can handle larger perturbations. However, these methods are based upon simpli¯ed and transparent dynamics of the robot, which makes it suboptimal to implement on common humanoid robots with local position-based controllers. To address this issue, we propose a hierarchical control architecture. Three low-level push recovery controllers are implemented for position controlled humanoid robots that replicate human recovery behaviors. These low-level controllers are integrated with a ZMP-based walk controller that is capable of generating reactive step motions.