The Umass Mobile Manipulator Uman: an Experimental Platform for Autonomous Mobile Manipulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artificial Intelligence: Soon to Be the World’S Greatest Intelligence, Or Just a Wild Dream? Edward R
Johnson & Wales University ScholarsArchive@JWU Academic Symposium of Undergraduate College of Arts & Sciences Scholarship 3-22-2010 Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream? Edward R. Kollett Johnson & Wales University - Providence, [email protected] Follow this and additional works at: https://scholarsarchive.jwu.edu/ac_symposium Part of the Artificial Intelligence and Robotics Commons, Arts and Humanities Commons, Nanoscience and Nanotechnology Commons, and the Social and Behavioral Sciences Commons Repository Citation Kollett, Edward R., "Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream?" (2010). Academic Symposium of Undergraduate Scholarship. 3. https://scholarsarchive.jwu.edu/ac_symposium/3 This Research Paper is brought to you for free and open access by the College of Arts & Sciences at ScholarsArchive@JWU. It has been accepted for inclusion in Academic Symposium of Undergraduate Scholarship by an authorized administrator of ScholarsArchive@JWU. For more information, please contact [email protected]. Artificial Intelligence: Soon to be the world’s greatest intelligence, or just a wild dream? Edward Kollett Johnson & Wales University Honors Program 2009 Edward Kollett, Page 2 Artificial Intelligence is a term, coined by John McCarthy in 1956, that “in its broadest sense would indicate the ability of an artifact to perform the same kinds of functions that characterize human thought processes” (“Artificial Intelligence”). Typically, it is used today to refer to a computer program that is trying to simulate the human brain, or at least parts of it. Attempts to recreate the human brain have been a goal of mankind for centuries, but only recently, as computers have become as powerful as they are now, does the goal of a fully automated robot with human intelligence and emotional capabilities seems to be within reach. -
Modeling and Control of Underwater Robotic Systems
Modeling and Control of Underwater Robotic Systems Dr.ing. thesis Ingrid Schj0lberg Department of Engineering Cybernetics Norwegian University of Science and Technology March 1996 Report 96-21-W Department of Engineering Cybernetics Norwegian University of Science and Technology N-7034 Trondheim, Norway OBmetmoN of im doombst b mwia DISCLAI R Portions of tins document may be Illegible in electronic image products. Images are produced from the best available original document Preface This thesis is submitted for the Doktor ingenipr degree at the Norwegian University of Science and Technology (NTNU). The research was carried out at the Norwegian Institute of Technology (NTH), Department of Engi neering Cybernetics, in the period from January 1991 to March 1996. The work was funded by The Research Council of Norway (NFR) through the MOBATEL project. Professor Dr.ing. Olav Egeland was my supervisor. During the academic year 1992-1993 I worked at the European Organization for Nuclear Research (CERN). This stay was funded by TOTAL Norge. The work performed during this stay has not been included in this thesis. I am indebted to Professor Egeland for giving me the opportunity to take this study. I am also grateful for advice and comments during the writing of scientific articles and for the introduction to the fields of force control and vibration damping. I am thankful to the administrator of the MOBATEL project, Professor Jens G. Balchen, for letting me take part in this project. I am grateful to Professor Dr.ing. Thor I. Fossen for useful discussions on hydrodynamics. I want to express my gratitude to Dr.ing. -
Humanoid Robots – from Fiction to Reality?
KI-Zeitschrift, 4/08, pp. 5-9, December 2008 Humanoid Robots { From Fiction to Reality? Sven Behnke Humanoid robots have been fascinating people ever since the invention of robots. They are the embodiment of artificial intelligence. While in science fiction, human-like robots act autonomously in complex human-populated environments, in reality, the capabilities of humanoid robots are quite limited. This article reviews the history of humanoid robots, discusses the state-of-the-art and speculates about future developments in the field. 1 Introduction 1495 Leonardo da Vinci designed and possibly built a mechan- ical device that looked like an armored knight. It was designed Humanoid robots, robots with an anthropomorphic body plan to sit up, wave its arms, and move its head via a flexible neck and human-like senses, are enjoying increasing popularity as re- while opening and closing its jaw. By the eighteenth century, search tool. More and more groups worldwide work on issues like elaborate mechanical dolls were able to write short phrases, play bipedal locomotion, dexterous manipulation, audio-visual per- musical instruments, and perform other simple, life-like acts. ception, human-robot interaction, adaptive control, and learn- In 1921 the word robot was coined by Karel Capek in its ing, targeted for the application in humanoid robots. theatre play: R.U.R. (Rossum's Universal Robots). The me- These efforts are motivated by the vision to create a new chanical servant in the play had a humanoid appearance. The kind of tool: robots that work in close cooperation with hu- first humanoid robot to appear in the movies was Maria in the mans in the same environment that we designed to suit our film Metropolis (Fritz Lang, 1926). -
From Prometheus to Pistorius: a Genaelogy of Physical Ability
FROM PROMETHEUS TO PISTORIUS: A GENAELOGY OF PHYSICAL ABILITY by Stephanie J. Cork A thesis submitted to the Department of Sociology In conformity with the requirements for the degree of Masters of Arts Queen’s University Kingston, Ontario, Canada (September, 2011) Copyright ©Stephanie J. Cork, 2011 Abstract (Fragile Frames + Monstrosities)ModernWar + (Flagged Bodies + Cyborgs)PostmodernWar = dis-AbilityCyborged ii Acknowledgements A huge thank you goes out to: my friends, colleagues, office neighbours, mentors, family, defence committee, readers, editors and Steve. Thank you, also, to the Canadian and American troops as well as Paralympic athletes, Oscar Pistorius and Aimee Mullins for their inspiration, sorry, I have borrowed your stories to perpetuate my own academic success. Thanks also to Louise Bark for her endless patience and kindness, as well as a pint (or three!) at Ben’s Pub. Anne and Wendy and especially Michelle: you are lifesavers! Finally, my eternal gratitude to the: “greatest man alive,” Dr. Rob Beamish (Scott Mason 2011). iii Table of Contents Abstract............................................................................................................................................. i Acknowledgements......................................................................................................................... iii Table of Contents............................................................................................................................ iv Chapter 1: Introduction.....................................................................................................................1 -
Robotic Manipulators Mechanical Project for the Domestic Robot HERA
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333931156 Robotic Manipulators Mechanical Project For The Domestic Robot HERA Conference Paper · April 2019 CITATIONS READS 0 197 3 authors: Marina Gonbata Fabrizio Leonardi University Center of FEI University Center of FEI 3 PUBLICATIONS 0 CITATIONS 97 PUBLICATIONS 86 CITATIONS SEE PROFILE SEE PROFILE Plinio Thomaz Aquino Junior University Center of FEI 58 PUBLICATIONS 237 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Vehicle Coordination View project HERA: Home Environment Robot Assistant View project All content following this page was uploaded by Plinio Thomaz Aquino Junior on 21 June 2019. The user has requested enhancement of the downloaded file. BRAHUR-BRASERO 2019 II Brazilian Humanoid Robot Workshop and III Brazilian Workshop on Service Robotics Robotic Manipulators Mechanical Project For The Domestic Robot HERA Marina Yukari Gonbata1, Fabrizio Leonardi1 and Plinio Thomaz Aquino Junior1 Abstract— Robotics can ease peoples life, in the industrial that can ”read” the environment where it acts), ability to act and home environment. When talking about homes, robot may actuators and motors capable of producing actions, such as assist people in some domestic and tasks, done in repeat. To the displacement of the robot in the environment), robustness accomplish those tasks, a robot must have a robotic arm, so it can interact with the environment physically, therefore, a robot and intelligence (ability to handle the most diverse situations, must use its arm to do the tasks that are required by its user. in order to solve and perform tasks as complex as they are) [2]. -
Design and Evaluation of Modular Robots for Maintenance in Large Scientific Facilities
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PRITHVI SEKHAR PAGALA, MSC 2014 DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PhD Thesis Author: Prithvi Sekhar Pagala, MSC Advisors: Manuel Ferre Perez, PhD Manuel Armada, PhD 2014 DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES Author: Prithvi Sekhar Pagala, MSC Tribunal: Presidente: Dr. Fernando Matía Espada Secretario: Dr. Claudio Rossi Vocal A: Dr. Antonio Giménez Fernández Vocal B: Dr. Juan Antonio Escalera Piña Vocal C: Dr. Concepción Alicia Monje Micharet Suplente A: Dr. Mohamed Abderrahim Fichouche Suplente B: Dr. José Maráa Azorín Proveda Acuerdan otorgar la calificación de: Madrid, de de 2014 Acknowledgements The duration of the thesis development lead to inspiring conversations, exchange of ideas and expanding knowledge with amazing individuals. I would like to thank my advisers Manuel Ferre and Manuel Armada for their constant men- torship, support and motivation to pursue different research ideas and collaborations during the course of entire thesis. The team at the lab has not only enriched my professionally life but also in Spanish ways. Thank you all the members of the ROMIN, Francisco, Alex, Jose, Jordi, Ignacio, Javi, Chema, Luis .... This research project has been supported by a Marie Curie Early Stage Initial Training Network Fellowship of the European Community’s Seventh Framework Program "PURESAFE". I wish to thank the supervisors and fellow research members of the project for the amazing support, fruitful interactions and training events. -
Robonaut 2 Fact Sheet
National Aeronautics and Space Administration Robonaut 2 facts NASA Almost 200 people from 15 countries have visited the International Space Station, but the orbiting complex has only had human crew members – until now. Robonaut 2, the latest generation of the Robonaut astronaut helpers, launched to the space station aboard space shuttle Discovery on the STS-133 mission in February 2011. It is the fi rst humanoid robot in space, and although its primary job for now is demonstrating to engineers how dexterous robots behave in space, the hope is that, through upgrades and advancements, it could one day venture outside the station to help spacewalkers make repairs or additions to the station or perform scientifi c work. R2, as the robot is called, was unpacked in April and powered up for the first time in August. Though it is currently being tested inside the Destiny laboratory, over time both its territory and its applications could expand. Initial tasks identified for R2 include velocity air measurements and handrail cleaning, both of which are simple but necessary tasks that require a great deal of crew time. R2 also has a taskboard on which to practice flipping switches and pushing buttons. Over time, the robot should graduate to more complex tasks. There are no plans to return R2 to Earth. History Work on the first Robonaut began in 1997. The idea was to build a humanoid robot that could assist astronauts on tasks in which another pair of hands would be helpful or to venture forth to perform jobs either too dangerous for crew members to risk or too mundane for them to spend time on. -
Talk with a Robot
Talk With A Robot With its small, portable, travel size, kids and adults will love to bring it around to play with. Type a custom snippet or try one of the examples. Though, it was an improvement over the depressing white/black, its charm wore out pretty quickly. © 2014 Steve Worswick. “When the robot was active, people tended to respond and give feedback to whatever the robot was doing, saying ‘Wow!’, ‘Good job. Python 100. Typically, a chat bot communicates with a real person, but applications are being developed in which two chat bots can communicate with each other. We started with some of the key features. Human Robot Intelligent That Can Talk Dance Sing Watch Home Smart Humanoid Robot For Kids Education , Find Complete Details about Human Robot Intelligent That Can Talk Dance Sing Watch Home Smart Humanoid Robot For Kids Education,Human Robot Intelligent,Human Robots,Robots That Can Talk from Toy Robots Supplier or Manufacturer-Shenzhen Yuanhexuan Industrial Co. Another communication method I want to talk about is XMLRPC, which stands for XML-formatted Remote Procedure Call. The bots have hammers attached to micro servos that they use to hit targets on the other robot. Two human look-a-like robots invented by Japanese engineers. Unemployment. The site Cleverbot. Choose a material for your robot. Typically, a chat bot communicates with a real person, but applications are being developed in which two chat bots can communicate with each other. Slideshow ( 2 images ). Type a custom snippet or try one of the examples. In this week’s Tech Talk podcast: Brian Stelter discusses recent hacks on major Web sites and the author of a new book on robots discusses what is to come. -
Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used. -
History of Robotics: Timeline
History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios. -
Special Feature on Advanced Mobile Robotics
applied sciences Editorial Special Feature on Advanced Mobile Robotics DaeEun Kim School of Electrical and Electronic Engineering, Yonsei University, Shinchon, Seoul 03722, Korea; [email protected] Received: 29 October 2019; Accepted: 31 October 2019; Published: 4 November 2019 1. Introduction Mobile robots and their applications are involved with many research fields including electrical engineering, mechanical engineering, computer science, artificial intelligence and cognitive science. Mobile robots are widely used for transportation, surveillance, inspection, interaction with human, medical system and entertainment. This Special Issue handles recent development of mobile robots and their research, and it will help find or enhance the principle of robotics and practical applications in real world. The Special Issue is intended to be a collection of multidisciplinary work in the field of mobile robotics. Various approaches and integrative contributions are introduced through this Special Issue. Motion control of mobile robots, aerial robots/vehicles, robot navigation, localization and mapping, robot vision and 3D sensing, networked robots, swarm robotics, biologically-inspired robotics, learning and adaptation in robotics, human-robot interaction and control systems for industrial robots are covered. 2. Advanced Mobile Robotics This Special Issue includes a variety of research fields related to mobile robotics. Initially, multi-agent robots or multi-robots are introduced. It covers cooperation of multi-agent robots or formation control. Trajectory planning methods and applications are listed. Robot navigations have been studied as classical robot application. Autonomous navigation examples are demonstrated. Then services robots are introduced as human-robot interaction. Furthermore, unmanned aerial vehicles (UAVs) or autonomous underwater vehicles (AUVs) are shown for autonomous navigation or map building. -
Kultur -Und Techniksoziologische Studien
KKUULLTTUURR-- UUNNDD TTEECCHHNNIIKKSSOOZZIIOOLLOOGGIISSCCHHEE SSTTUUDDIIEENN no 03/2013 no 03/2013 - 2 - Working Papers kultur- und techniksoziologische Studien http://www.uni-due.de/wpkts no 03/2013 Herausgeber: Diego Compagna, Stefan Derpmann Layout: Vera Keysers Kontaktadresse: Universität Duisburg-Essen Institut für Soziologie Diego Compagna [email protected] Ein Verzeichnis aller Beiträge befindet sich hier: http://www.uni-due.de/wpkts ISSN 1866-3877 (Working Papers kultur- und techniksoziologische Studien) Working Papers kultur- und techniksoziologische Studien - Copyright This online working paper may be cited or briefly quoted in line with the usual academic conventions. You may also download them for your own personal use. This paper must not be published elsewhere (e.g. to mailing lists, bulletin boards etc.) without the author‘s explicit permission. Please note that if you copy this paper you must: • include this copyright note • not use the paper for commercial purposes or gain in any way You should observe the conventions of academic citation in a version of the following form: Author (Year): Title. In: Working Papers kultur- und techniksoziologische Studien (no xx/Year). Eds.: Diego Compagna / Stefan Derpmann, University Duisburg-Essen, Germany, at: http://www.uni-due.de/wpkts Working Papers kultur- und techniksoziologische Studien - Copyright Das vorliegende Working Paper kann entsprechend der üblichen akademischen Regeln zitiert werden. Es kann für den persönlichen Gebrauch auch lokal gespeichert werden. Es darf nicht anderweitig publiziert oder verteilt werden (z.B. in Mailinglisten) ohne die ausdrückliche Erlaubnis des/der Autors/in. Sollte dieses Paper ausgedruckt oder kopiert werden: • Müssen diese Copyright Informationen enthalten sein • Darf es nicht für kommerzielle Zwecke verwendet werden Es sollten die allgemein üblichen Zitationsregeln befolgt werden, bspw.