Modeling and Control of Legged Robots
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Humanoid Robots – from Fiction to Reality?
KI-Zeitschrift, 4/08, pp. 5-9, December 2008 Humanoid Robots { From Fiction to Reality? Sven Behnke Humanoid robots have been fascinating people ever since the invention of robots. They are the embodiment of artificial intelligence. While in science fiction, human-like robots act autonomously in complex human-populated environments, in reality, the capabilities of humanoid robots are quite limited. This article reviews the history of humanoid robots, discusses the state-of-the-art and speculates about future developments in the field. 1 Introduction 1495 Leonardo da Vinci designed and possibly built a mechan- ical device that looked like an armored knight. It was designed Humanoid robots, robots with an anthropomorphic body plan to sit up, wave its arms, and move its head via a flexible neck and human-like senses, are enjoying increasing popularity as re- while opening and closing its jaw. By the eighteenth century, search tool. More and more groups worldwide work on issues like elaborate mechanical dolls were able to write short phrases, play bipedal locomotion, dexterous manipulation, audio-visual per- musical instruments, and perform other simple, life-like acts. ception, human-robot interaction, adaptive control, and learn- In 1921 the word robot was coined by Karel Capek in its ing, targeted for the application in humanoid robots. theatre play: R.U.R. (Rossum's Universal Robots). The me- These efforts are motivated by the vision to create a new chanical servant in the play had a humanoid appearance. The kind of tool: robots that work in close cooperation with hu- first humanoid robot to appear in the movies was Maria in the mans in the same environment that we designed to suit our film Metropolis (Fritz Lang, 1926). -
Global Education Entry Points Into the Curriculum: a Guide for Teacher Librarians
DOCUMENT RESUME ED 415 155 SO 028 109 AUTHOR Blakey, Elaine; Maguire, Gerry; Steward, Kaye TITLE Global Education Entry Points into the Curriculum: A Guide for Teacher Librarians. INSTITUTION Alberta Teachers Association, Edmonton. Learning Resources Council.; Alberta Global Education Project, Edmonton. PUB DATE 1991-00-00 NOTE 74p. AVAILABLE FROM Alberta Global Education Project, 11010 142 Street, Edmonton, Alberta T5N 2R1 Canada. PUB TYPE Guides Non-Classroom (055) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS Elementary Secondary Education; Foreign Countries; *Global Approach; *Global Education; Interdisciplinary Approach; *Justice; *Peace; *Resource Materials; Social Studies; Sustainable Development IDENTIFIERS Alberta ABSTRACT This information packet is useful to teacher-librarians and teachers who would like to integrate global education concepts into existing curricula. The techniques outlined in this document provide strategies for implementing global education integration. The central ideas of the global education package include:(1) interrelatedness;(2) peace;(3) global community;(4) cooperation;(5) distribution and sustainable development; (6) multicultural understanding;(7) human rights;(8) stewardship; (9) empowerment; and (10) social justice. Throughout the packet, ideas are offered for inclusion of global perspectives in language arts, science, mathematics, and social studies. Recommendations are included for purchases of resource materials and cross reference charts for concepts across grades and curriculum areas. (EH) -
Control in Robotics
Control in Robotics Mark W. Spong and Masayuki Fujita Introduction The interplay between robotics and control theory has a rich history extending back over half a century. We begin this section of the report by briefly reviewing the history of this interplay, focusing on fundamentals—how control theory has enabled solutions to fundamental problems in robotics and how problems in robotics have motivated the development of new control theory. We focus primarily on the early years, as the importance of new results often takes considerable time to be fully appreciated and to have an impact on practical applications. Progress in robotics has been especially rapid in the last decade or two, and the future continues to look bright. Robotics was dominated early on by the machine tool industry. As such, the early philosophy in the design of robots was to design mechanisms to be as stiff as possible with each axis (joint) controlled independently as a single-input/single-output (SISO) linear system. Point-to-point control enabled simple tasks such as materials transfer and spot welding. Continuous-path tracking enabled more complex tasks such as arc welding and spray painting. Sensing of the external environment was limited or nonexistent. Consideration of more advanced tasks such as assembly required regulation of contact forces and moments. Higher speed operation and higher payload-to-weight ratios required an increased understanding of the complex, interconnected nonlinear dynamics of robots. This requirement motivated the development of new theoretical results in nonlinear, robust, and adaptive control, which in turn enabled more sophisticated applications. Today, robot control systems are highly advanced with integrated force and vision systems. -
Kinematic Modeling of a Rhex-Type Robot Using a Neural Network
Kinematic Modeling of a RHex-type Robot Using a Neural Network Mario Harpera, James Paceb, Nikhil Guptab, Camilo Ordonezb, and Emmanuel G. Collins, Jr.b aDepartment of Scientific Computing, Florida State University, Tallahassee, FL, USA bDepartment of Mechanical Engineering, Florida A&M - Florida State University, College of Engineering, Tallahassee, FL, USA ABSTRACT Motion planning for legged machines such as RHex-type robots is far less developed than motion planning for wheeled vehicles. One of the main reasons for this is the lack of kinematic and dynamic models for such platforms. Physics based models are difficult to develop for legged robots due to the difficulty of modeling the robot-terrain interaction and their overall complexity. This paper presents a data driven approach in developing a kinematic model for the X-RHex Lite (XRL) platform. The methodology utilizes a feed-forward neural network to relate gait parameters to vehicle velocities. Keywords: Legged Robots, Kinematic Modeling, Neural Network 1. INTRODUCTION The motion of a legged vehicle is governed by the gait it uses to move. Stable gaits can provide significantly different speeds and types of motion. The goal of this paper is to use a neural network to relate the parameters that define the gait an X-RHex Lite (XRL) robot uses to move to angular, forward and lateral velocities. This is a critical step in developing a motion planner for a legged robot. The approach taken in this paper is very similar to approaches taken to learn forward predictive models for skid-steered robots. For example, this approach was used to learn a forward predictive model for the Crusher UGV (Unmanned Ground Vehicle).1 RHex-type robot may be viewed as a special case of skid-steered vehicle as their rotating C-legs are always pointed in the same direction. -
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
Towards Pronking with a Hexapod Robot
Towards pronking with a hexapod robot Dave McMordie Department of Electrical Engineering McGill University, Montreal, Canada July, 2002 A thesis submitted to the Faculty of Graduate 5tudies and Research in partial fulfillment of the requirements of the degree Master of Engineering © Dave McMordie, 2002 National Library Bibliothèque nationale 1+1 of Canada du Canada Acquisitions and Acquisisitons et Bibliographie Services services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON K1A DN4 Ottawa ON K1A DN4 Canada Canada Your file Votre référence ISBN: 0-612-85890-1 Our file Notre référence ISBN: 0-612-85890-1 The author has granted a non L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou aturement reproduits sans son permission. autorisation. Canada Abstract RHex is a robotic hexapod with springy legs and just six actuated degrees of freedom. This work presents the development of a pronking gait for RHex, extending its efficiency and speed by exploiting its springy legs for hopping. -
Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used. -
Performance Analysis and Terrain Classification for a Legged Robot
Performance analysis and terrain classification for a legged robot over rough terrain Fernando L. Garcia Bermudez, Ryan C. Julian, Duncan W. Haldane, Pieter Abbeel, and Ronald S. Fearing Abstract— Minimally actuated millirobotic crawlers navigate unreliably over uneven terrain–even when designed with in- herent stability–mostly because of manufacturing variabilities and a lack of good models for ground interaction. In this paper, we investigate the performance of a legged robot as it traverses three distinct rough terrains: tile, carpet, and gravel. Furthermore, we present an accurate, robust, low-lag, and efficient algorithm for terrain classification that uses vibration data from the on-board inertial measurement unit and motor control data from back-EMF sensing and magnetic encoders. I. INTRODUCTION Millirobotic crawling platforms have in general been op- timized from a design perspective at the mechanical level. The optimization goal was to achieve a certain behavior optimally, such as sprinting [4][17], climbing [3], walking [18][21], or turning [28]. What was not often reported, Fig. 1: Robotic platform, outfitted with motion capture though, is that although the design may be optimal for a tracking dots, positioned on top of the gravel used for specific task, manufacturing variability can result in poor experimentation. performance. This is even more significant at the millirobot scale and was a particularly crucial limitation of the actuation mechanism of the Micromechanical Flying Insect [1]. rough terrains. Using telemetry gathered from the on-board This has prompted several groups to work on adapting sensors, we then focus on terrain classification. the robot’s gait to achieve better performance at tasks the Previous authors have focused on vibrational terrain clas- robot was not designed for (e.g. -
Design and Control of a Large Modular Robot Hexapod
Design and Control of a Large Modular Robot Hexapod Matt Martone CMU-RI-TR-19-79 November 22, 2019 The Robotics Institute School of Computer Science Carnegie Mellon University Pittsburgh, PA Thesis Committee: Howie Choset, chair Matt Travers Aaron Johnson Julian Whitman Submitted in partial fulfillment of the requirements for the degree of Master of Science in Robotics. Copyright © 2019 Matt Martone. All rights reserved. To all my mentors: past and future iv Abstract Legged robotic systems have made great strides in recent years, but unlike wheeled robots, limbed locomotion does not scale well. Long legs demand huge torques, driving up actuator size and onboard battery mass. This relationship results in massive structures that lack the safety, portabil- ity, and controllability of their smaller limbed counterparts. Innovative transmission design paired with unconventional controller paradigms are the keys to breaking this trend. The Titan 6 project endeavors to build a set of self-sufficient modular joints unified by a novel control architecture to create a spiderlike robot with two-meter legs that is robust, field- repairable, and an order of magnitude lighter than similarly sized systems. This thesis explores how we transformed desired behaviors into a set of workable design constraints, discusses our prototypes in the context of the project and the field, describes how our controller leverages compliance to improve stability, and delves into the electromechanical designs for these modular actuators that enable Titan 6 to be both light and strong. v vi Acknowledgments This work was made possible by a huge group of people who taught and supported me throughout my graduate studies and my time at Carnegie Mellon as a whole. -
Principles of Robot Locomotion
Principles of robot locomotion Sven Böttcher Seminar ‘Human robot interaction’ Index of contents 1. Introduction................................................................................................................................................1 2. Legged Locomotion...................................................................................................................................2 2.1 Stability................................................................................................................................................3 2.2 Leg configuration.................................................................................................................................4 2.3 One leg.................................................................................................................................................5 2.4 Two legs...............................................................................................................................................7 2.5 Four legs ..............................................................................................................................................9 2.6 Six legs...............................................................................................................................................11 3 Wheeled Locomotion................................................................................................................................13 3.1 Wheel types .......................................................................................................................................13 -
Ph. D. Thesis Stable Locomotion of Humanoid Robots Based
Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Department of System and Automation Engineering Legan´es, October 2008 i Ph. D. Thesis Stable locomotion of humanoid robots based on mass concentrated model Author: Mario Ricardo Arbul´uSaavedra Director: Carlos Balaguer Bernaldo de Quiros, Ph. D. Signature of the board: Signature President Vocal Vocal Vocal Secretary Rating: Legan´es, de de Contents 1 Introduction 1 1.1 HistoryofRobots........................... 2 1.1.1 Industrialrobotsstory. 2 1.1.2 Servicerobots......................... 4 1.1.3 Science fiction and robots currently . 10 1.2 Walkingrobots ............................ 10 1.2.1 Outline ............................ 10 1.2.2 Themes of legged robots . 13 1.2.3 Alternative mechanisms of locomotion: Wheeled robots, tracked robots, active cords . 15 1.3 Why study legged machines? . 20 1.4 What control mechanisms do humans and animals use? . 25 1.5 What are problems of biped control? . 27 1.6 Features and applications of humanoid robots with biped loco- motion................................. 29 1.7 Objectives............................... 30 1.8 Thesiscontents ............................ 33 2 Humanoid robots 35 2.1 Human evolution to biped locomotion, intelligence and bipedalism 36 2.2 Types of researches on humanoid robots . 37 2.3 Main humanoid robot research projects . 38 2.3.1 The Humanoid Robot at Waseda University . 38 2.3.2 Hondarobots......................... 47 2.3.3 TheHRPproject....................... 51 2.4 Other humanoids . 54 2.4.1 The Johnnie project . 54 2.4.2 The Robonaut project . 55 2.4.3 The COG project . -
Dynamically Diverse Legged Locomotion for Rough Terrain
Dynamically diverse legged locomotion for rough terrain The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Byl, Katie, and Russ Tedrake. “Dynamically Diverse Legged Locomotion for Rough Terrain.” Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe International Conference Center, Kobe, Japan, May 12-17, 2009 1607-1608. © Copyright 2009 IEEE. As Published http://dx.doi.org/10.1109/ROBOT.2009.5152757 Publisher Institute of Electrical and Electronics Engineers Version Final published version Citable link http://hdl.handle.net/1721.1/64752 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. 2009 IEEE International Conference on Robotics and Automation Kobe International Conference Center Kobe, Japan, May 12-17, 2009 Dynamically Diverse Legged Locomotion for Rough Terrain Katie Byl and Russ Tedrake Abstract— In this video, we demonstrate the effectiveness of which aim toward precise foot placement often traverse a kinodynamic planning strategy that allows a high-impedance terrain by using relatively slow, deliberate gaits [3], [4], [10], quadruped to operate across a variety of rough terrain. At one [8], [6]. In this video we demonstrate a control approach extreme, the robot can achieve precise foothold selection on intermittent terrain. More surprisingly, the same inherently- which can achieve both precise foot placement, as illustrated stiff robot can also execute highly dynamic and underactuated in Figure 1, and highly dynamic and fast motions, such as motions with high repeatability.