applied sciences Article Design, Modeling, and Control of an Autonomous Legged-Wheeled Hybrid Robotic Vehicle with Non-Rigid Joints Vítor H. Pinto 1,2,* , Inês N. Soares 1 , Marco Rocha 1 , José Lima 2,3 , José Gonçalves 2,3 and Paulo Costa 1,2 1 FEUP—Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
[email protected] (I.N.S.);
[email protected] (M.R.);
[email protected] (P.C.) 2 CRIIS—Centre for Robotics in Industry and Intelligent Systems, INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Campus of FEUP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
[email protected] (J.L.);
[email protected] (J.G.) 3 CeDRI—Research Centre in Digitalization and Intelligent Robotics, School of Technology and Management, Polytechnic Institute of Bragança, Santa Apolónia Campus, 5300-253 Bragança, Portugal * Correspondence:
[email protected] Abstract: This paper presents a legged-wheeled hybrid robotic vehicle that uses a combination of rigid and non-rigid joints, allowing it to be more impact-tolerant. The robot has four legs, each one with three degrees of freedom. Each leg has two non-rigid rotational joints with completely passive components for damping and accumulation of kinetic energy, one rigid rotational joint, and a driving wheel. Each leg uses three independent DC motors—one for each joint, as well as a fourth one for driving the wheel. The four legs have the same position configuration, except for the upper hip joint. The vehicle was designed to be modular, low-cost, and its parts to be interchangeable.