111Th Annual Meeting of the Texas Academy of Science

Total Page:16

File Type:pdf, Size:1020Kb

111Th Annual Meeting of the Texas Academy of Science 111th Annual Meeting of the Texas Academy of Science PROGRAM and ABSTRACTS March 6–8, 2008 Texas A&M University–Corpus Christi Corpus Christi, Texas 2008 PROGRAM CHAIR Ray Mathews PROGRAM EDITOR Bob Murphy PROGRAM SPONSOR Texas Parks and Wildlife Department CS BK V3400-477 (2/08) TEXAS ACADEMY OF SCIENCE 2008 1 SCHEDULE OF EVENTS THURSDAY – MARCH 6, 2008 2:00 – 5:00pm TAS Board Meeting University Center Bayview Room 3:00 – 6:00 pm Pre-Conference Check-In/Late Registration University Center Lone Star Concourse 6:00 – 8:00 pm Welcome Mixer University Center Oso Room FRIDAY – MARCH 7, 2008 7:30 am – 9:00 am Conference Check-In/Late Registration University Center Lone Star Concourse 7:30 am – 9:00 am Breakfast/Morning Refreshments University Center Legacy Hall 7:30 am – 7:00 pm Exhibits – Vendor Displays University Center Lone Star Concourse 8:00 am – 5:00 pm Poster Sessions Faculty Center 8:00 am – 10:00 am Paper Sessions/Presentations University Center Center for Instruction Center for the Sciences Harte Research Institute 9:40 am – 10:00 am Mid-Morning Break (Drop In) University Center Legacy Hall 11:30 am – 1:00 pm Lunch University Center Lone Star Ballroom 1:00 pm – 5:00 pm Paper Sessions/Presentations University Center Center for Instruction Center for the Sciences Harte Research Institute 2:00 pm – 2:45 pm 2008 Distinguished Texas Scientist (DTS) University Center Lone Star Ballroom 2:45 pm – 3:30 pm DTS Q&A Session – Students Only University Center Lone Star Ballroom 3:30 pm – 4:00 pm Mid-Afternoon Break (Drop In) University Center Legacy Hall 3:00 pm – 4:00 pm TAS Business Meeting Center for Instruction Room 138 4:00 pm – 5:00 pm 2008 Outstanding Texas Educator (OTE) Center for Science Room 101 5:00 pm – 5:30 pm OTE Q&A Session – Students Only Center for Science Room 101 5:15 pm – 5:45 pm All Section Chairs Meeting Science & Technology Room 101 6:00 pm – 7:00 pm Banquet Reception University Center Legacy Hall 7:00 pm – 9:00 pm Awards Banquet University Center Lone Star Ballroom SATURDAY – MARCH 8, 2007 7:30 am – 9:00 am Breakfast/Morning Refreshments Center for Instruction Atrium 8:00 am – 12:00 pm Paper Sessions/Presentations Center for Instruction 8:00 am – 12:00 pm Geology Field Trip Jelly Fish Parking Lot 2 TEXAS ACADEMY OF SCIENCE 2008 TEXAS ACADEMY OF SCIENCE 2008 3 TABLE OF CONTENTS Acknowledgements from the Program Chair . .4 Letter of Welcome from the TAS President . .5 Letter of Welcome from the Dean, Texas A&M–Corpus Christi . .6 2008 Texas Distinguished Scientist . .7 2008 Outstanding Texas Educator . .8 2008 Texas Academy of Science Fellows and Outstanding Service Award . .9 2007 – 2008 Texas Academy of Science Board of Directors . .10 2007 – 2008 Texas Academy of Science Section Officers . .11 Texas Academy of Science Memorial Tributes . .13 Symposium Overview: Exploration of Estuarine Linkages . .16 2008 Program Agenda . .17 Anthropology . .18 Botany . .18 Cell and Molecular Biology . .19 Chemistry and Biochemistry . .23 Computer Science . .26 Conservation Ecology . .26 Environmental Science . .28 Exploration of Estuarine Linkages Symposium . .30 Freshwater and Marine Science . .32 GeoSciences . .42 Mathematics . .43 Science Education . .43 Systematics and Evolutionary Biology . .45 Terrestrial Ecology and Management . .47 Abstracts . .50 Map of Texas A&M–Corpus Christi . .147 Map of Corpus Christi Area . .148 FUTURE ACADEMY MEETINGS 2009 112th annual meeting . .Texas Tech University Field Station at Junction, Junction, Texas 4 TEXAS ACADEMY OF SCIENCE 2008 ACKNOWLEDGEMENTS FROM THE PROGRAM CHAIR As any past Program Chair will tell you, the task of putting together the Annual Program for the Texas Academy of Science is daunting. Before I even started on the work, several of the Past-Presidents offered their condolences, which let me know I was going to face a significant challenge. In meeting with those challenges, there are many people that helped me get to the final product. Dr. Pati Milligan, our webmaster from Baylor University’s Computer Information Systems Department, provided custom features in the MyReview software package that we used for just the second time for abstract submis- sions. Those of you who submitted abstracts did so by uploading them to this software, and it was very helpful for organizing the papers in the various Sections of the Academy by membership type (student or senior member). The papers could then be filtered into different categories for assigning them to sessions, rooms, and times, and alerting judges of those posters or presentations that need to be evaluated for student awards. Dr. Roy Lehman, Local Host, and Crystal Seehorn, Events and Conference Manager, TAMU-CC were very helpful in determining what rooms in the various campus buildings were available for the Annual Meeting sessions, registration, banquet, symposium, and lectures by the Distinguished Texas Scientist and Outstanding Texas Educator among other activities associated with our program. Crystal went through numerous changes with me in the rooms to accommodate the largest meeting the academy has ever had, with 340 abstracts submit- ted, and her patience and work on our behalf is greatly appreciated. Dr. Hudson DeYoe was always there to answer questions about how he approached problems with last year’s program. Dr. Bill Quinn helped provide information on the awards for the program, and gave me information that was necessary for student presenta- tions to be judged. Joseph Kowalski, Center for Subtropical Studies at The University of Texas-Pan American organized an international symposium entitled “Exploration of estuarine linkages: A symposium on physical, chemical, and biological connections on the coastal fringe.” The Academy’s Board of Directors; Dr. Larry McKinney, Director of Coastal Resources for the Texas Parks and Wildlife Department; Dr. Bob Ferguson, Director, and Dr. Wes Tunnell, Associate Director of the Harte Research Institute, combined their resources to provide funding for travel expenses to our Mexican colleagues and internationally recognized invited speakers. The program itself could not be produced without the help of Bob Murphy, Artificial Reef Specialist, and Chris Hunt, Graphic Designer, with the Texas Parks and Wildlife Department. Chris has worked on the graphic design for the Academy’s program for eight years, and her expertise is of considerable benefit to those of you who use the program each year to find your way to the various sessions and other activities. Bob Murphy has made a special effort to honor our deceased colleague, Dr. Amir-Moez, Mathematics Professor Emeritus, distin- guished colleague, and benefactor to the Academy for many years through development of a poster in his honor. If it were not for your presentations and posters in numerous scientific disciplines, serving as chairs, vice-chairs, moderators, and judges of the various sessions, the Academy would not function, and I am honored to be of service to such an outstanding group of individuals. Finally, I would like to thank my colleagues and administrators with my employer, the Texas Water Development Board, for allowing me the time and resources to work on this program on behalf of the Texas Academy of Science. Ray Mathews TEXAS ACADEMY OF SCIENCE 2008 5 LETTER OF WELCOME FROM THE TAS PRESIDENT Greetings fellow scientists! For many of you this may be the first (but hopefully not the last!) scientific meeting you attend. Some of you may be anxious about making your first presentation (I still remember my first time!). Since at least 50% of the papers and posters presented at TAS meetings are student-authored, take solace in that you are not alone! TAS prides itself as being a training ground for aspiring scientists. It is here that you can gain personal insight as to your interest and aptitude in science. Take the time to mingle with fellow students and senior scientists from outside your institution. Science doesn’t happen in a vacuum; a big part of science is communicating ideas. You can learn a lot very quickly and have fun at the same time! At the time I am writing this letter (January), there is a move in Texas to incorporate creationism and intelligent design in the science curricula of Texas schools. We, as scientists, are partly responsible for this situation. I think it is the responsibility of scientists not only to educate each other but to educate the public about science as well. In this case, it means doing what we do best, explaining our positions employing a dispassionate, unbiased look at the evidence. Our goal should not be to espouse one view or another, but to separate the wheat from the chaff and to help the public to sort through the issue. Regardless of your beliefs, as a scientist, our goal should be to use, and promote the use of logic and rational, fact-based reasoning. Towards this end, all scientists have an obligation to be scientist-citizens meaning that besides their other duties scientists should regularly reach out to the public by giving public lectures, getting involved in local government, running for the school board, giving time to your local schools, or writing articles for the popular press. Use your talents as scientists to bring clarity of thought to issues, whatever your personal beliefs may be. But don’t be silent. Have a productive and stimulating meeting, Hudson R. DeYoe President 6 TEXAS ACADEMY OF SCIENCE 2008 TEXAS ACADEMY OF SCIENCE 2008 7 2008 DISTINGUISHED SCIENTIST Dr. Ernest L. Lundelius, Jr. Dr. Ernest L. Lundelius, Jr., is descended from a pioneering Central Texas Swedish family. He is a product of Austin public schools, although his mother, a schoolteacher, fostered lifetime learning at home. Fossils and animals have fascinated Dr.
Recommended publications
  • QUATERNARY GEOLOGIC MAP of AUSTIN 4° X 6° QUADRANGLE, UNITED STATES
    QUATERNARY GEOLOGIC MAP OF AUSTIN 4° x 6° QUADRANGLE, UNITED STATES QUATERNARY GEOLOGIC ATLAS OF THE UNITED STATES MAP I-1420 (NH-14) State compilations by David W. Moore and E.G. Wermund, Jr. Edited and integrated by David W. Moore, Gerald M. Richmond and Ann Coe Christiansen 1993 NOTE: This map is the product of collaboration of the Texas Bureau of Economic Geology and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, the map and map explanations were prepared by the State compiler. Second, information on the map was integrated with that of adjacent maps, locally supplemented, and related to a uniform map symbol classification by the editors. Map unit descriptions were edited, supplemented, and coordinated with those of other maps of this series so that individual unit descriptions are applicable throughout both this map and all other maps of the series. Problems of mapping or interpretation in different areas were resolved by correspondence to the extent possible; most simply reflect differences in available information or differences in philosophies of mapping and serve to encourage further investigation. Less than forty percent of the surficial deposits of the United States have been mapped and described. Traditionally, mapping of surficial deposits has focused on glacial, alluvial, eolian, lacustrine, marine, and landslide deposits. Slope and upland deposits have been mapped in detail only in restricted areas. However, an enormous amount of engineering construction and many important problems of land use and land management are associated with regions that have extensive slope and upland deposits (colluvium and residuum, for example).
    [Show full text]
  • Chemical and Biological Potential of Ammi Visnaga (L.) Lam
    J. Adv. Biomed. & Pharm. Sci. 4 (2021) 160-176 Journal of Advanced Biomedical and Pharmaceutical Sciences Journal Homepage: http://jabps.journals.ekb.eg Chemical and Biological Potential of Ammi visnaga (L.) Lam. and Apium graveolens L.: A Review (1963-2020) Shereen S. T. Ahmed1*, John R. Fahim1, Usama R. Abdelmohsen1,2, Ashraf N. E. Hamed1* 1 Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt. 2 Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt. Received: January 3, 2021; revised: June 17, 2021; accepted: June 26, 2021 Abstract Medicinal plants have a vital role in our life, providing us with a variety of secondary metabolites with varied chemical structures and biological activities. Ammi visnaga (L.) Lam. and Apium graveolens L. are common traditional plant species that have long been used for the prevention and treatment of several health problems. Both A. visnaga and A. graveolens belong to the carrot family, Apiaceae (Umbelliferae) and showed different groups of natural compounds, such as coumarins, furanochromones, flavonoids and essential oils. In view of that, the current review describes various classes of chemical constituents identified so far from these medicinal species, together with their valued pharmacological and therapeutic effects. Key words Ammi visnaga, Apium graveolens, Apiaceae (Umbelliferae), Natural products, Biological activities. 1. Introduction comprehensive list of the previously isolated compounds from A. visnaga is presented in Table 1 and Figure 1. Family Apiaceae (Umbelliferae) is a family of aromatic and flowering plants, known as celery, carrot or parsley family, 2.1.2. Biological review or simply as umbellifers. It includes more than 3000–3750 species in 300–455 genera.
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • EMD Uranium (Nuclear Minerals) Committee
    EMD Uranium (Nuclear Minerals) Committee EMD Uranium (Nuclear Minerals) Committee Annual Report - 2011 Michael D. Campbell, P.G., P.H., Chair Vice-Chairs: Robert Odell, P.G., (Vice-Chair: Industry), Consultant, Casper, WY (Vice-Chair Report: page 19) Steven N. Sibray, P.G., (Vice-Chair: University), U. of Nebraska, Lincoln, NB (Vice-Chair Report: page 36) Robert W. Gregory, P.G., (Vice-Chair: Government), WY State Geol. Survey, Laramie, WY (Vice-Chair Report: page 38) Michael Jacobs, P.G., (Vice-Chair: Representative of DEG) Dan Tearpock, P.G., (Vice-Chair: Representative of DPA) Advisory Committee: Henry M. Wise, P.G., Eagle-SWS, La Porte, TX Bruce Handley, P.G., Environmental & Mining Consultant, Houston, TX James Conca, Ph.D., P.G., Director, Carlsbad Research Center, New Mexico State U., Carlsbad, NM Fares M Howari, Ph.D., University of Texas of the Permian Basin, Odessa, TX Hal Moore, Moore Petroleum Corporation, Norman, OK Douglas C. Peters, P.G., Consultant, Golden, CO Arthur R. Renfro, P.G., Senior Geological Consultant, Cheyenne, WY Karl S. Osvald, P.G., Senior Geologist, U.S. BLM, Casper WY Jerry Spetseris, P.G., Consultant, Austin, TX Observing Committee: http://emd.aapg.org/members_only/uranium/index.cfmlbobservers Introduction This Annual Report for 2011 serves to update the 2010 Mid-Year Report of the Uranium (Nuclear Minerals) Committee. The U.S. Energy Information Agency (EIA) provides updates regarding uranium activities in the U.S. This information provides the basis for the first section of our report. The UN‗s International Atomic Energy Agency (IAEA) and the World Nuclear Institute (WNI) have provided much of the data and information for our report on international activities.
    [Show full text]
  • Stratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island-Corpus Christi Bay Area, South Texas Gulf Coast
    Stratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island-Corpus Christi Bay Area, South Texas Gulf Coast U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1328 COVER: Landsat image showing a regional view of the South Texas coastal zone. IUR~AtJ Of ... lt~f<ARY I. liBRARY tPotC Af•a .VAStf. , . ' U. S. BUREAU eF MINES Western Field Operation Center FEB 1919S7 East 360 3rd Ave. IJ.tA~t tETUI~· Spokane, Washington .99~02. m UIIM» S.tratigraphic Studies of a Late Quaternary Barrier-Type Coastal Complex, Mustang Island­ Corpus Christi Bay Area, South Texas Gulf Coast Edited by GERALD L. SHIDELER A. Stratigraphic Studies of a Late Quaternary Coastal Complex, South Texas-Introduction and Geologic Framework, by Gerald L. Shideler B. Seismic and Physical Stratigraphy of Late Quaternary Deposits, South Texas Coastal Complex, by Gerald L. Shideler · C. Ostracodes from Late Quaternary Deposits, South Texas Coastal Complex, by Thomas M. Cronin D. Petrology and Diagenesis of Late Quaternary Sands, South Texas Coastal Complex, by Romeo M. Flores and C. William Keighin E. Geochemistry and Mineralogy of Late Quaternary Fine-grained Sediments, South Texas Coastal Complex, by Romeo M. Flores and Gerald L. Shideler U.S. G E 0 L 0 G I CAL SURVEY P R 0 FE S S I 0 N A L p·A PER I 3 2 8 UNrfED S~fA~fES GOVERNMENT PRINTING ·OFFICE, WASHINGTON: 1986 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging-in-Publication Data Main entry under title: Stratigraphic studies of a late Quaternary barrier-type coastal complex, Mustang Island-Corpus Christi Bay area, South Texas Gulf Coast.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • The Effects of Human Disturbance on Vascular Epiphyte in the Brazilian Atlantic Forest
    The effects of human disturbance on vascular epiphyte in the Brazilian Atlantic Forest Edicson Parra-Sanchez Imperial College London Department of Life Science Silwood Park Campus Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) April 2018 1 “What we have to practice today is solidarity, one must not approach people to say Here we come to give the charity of our presence, to teach our science, to show you your mistakes, your ignorance, your lack of basics. We go with investigative zeal, and humble spirit, to learn in great source of wisdom which is the people.” Che Guevara 2 Declaration The data collection and work presented in this thesis is all my own. Dr Cristina Banks-Leite did provide guidance throughout my thesis. Chapters are organized as papers, and I used “we” to recognize the role of my supervisor Dr Cristina. Data sources and software are referenced along the text. The support of different people is acknowledge as follows: Data collection was done with field assistants Jordy Jerez, Manon Czuckermand and Tiago Gloria. The study design was done by ECOFOR (Biodiversity and Ecosystem Functioning in Degraded and Recovering Amazonian and Atlantic Forests). Taxa identification was done with the help of MSc Gabriel Marcusso (Piperaceae), Dr Carlos Nunes and Eric Hagsater (Orchidaceae), Ms Suzana Martins and Marcio Leofegario (Bromeliaceae), Dr Alain Chautems (Gesneriaceae), and Thomas Croat (Ferns). In chapter 2, advice on the model fitting and interpretation was provided by Dr Jack Hatfield. In chapter 3, advice on the interpretation of the n-dimension analysis was provided by Dr Thomas Guillerme (as author of the “dispRity” R package).
    [Show full text]
  • Tulane Studies Tn Geology and Paleontology Pliocene
    TULANE STUDIES TN GEOLOGY AND PALEONTOLOGY Volu me 22, Number 2 Sepl<'mber 20. l!J8~) PLIOCENE THREE-TOED HORSES FROM LOUISIANA. WITH COMMENTS ON THE CITRONELLE FORMATION EAHL M. MANNING MUSP.UM OF'GEOSCIF:NCE. LOUISJJ\NA STATE UNIVF:RSlTY. JJATO.\I ROI.JG/<. LOL'/S//\;\':1 and llRUCE J. MACFADDlrn DEJ>ARTM/<:NTOF NATUH/\LSCIENCES. F'LORJD/\ MUSf:UM Of<'NJ\TUIV\/, lllSTOUY UNIVERSITY OF FLOH!IJJ\. GJ\/NESVlU.E. Fl.OH/DA CONTENTS Page T. ABSTRACT 3.5 II INTRODUCTION :l5 Ill. ACKNOWLEDGMENTS :rn TV . ABBREVIATIONS :l7 V. SYSTEMATIC PALEONTOLOGY ;37 VI. AGE OF THE TUNICA HILLS HIPPARIONINES 38 VIL STRATIGRAPHIC PROVENIENCE 38 Vlll. PLIOCENE TERRESTRIAL VERTEBRATES OF THE GULF AND ATLANTIC COASTAL PLAIN .JO IX. COMMENTS ON THE CITRONELLE FORMATION .JI X. AGE OF THE CITRONELLE 42 XL TH E CITRONELLE FORMATION IN nm TUNICA HILLS .t:1 XII. LITERATURE CITED l.J January of 1985, the senior author was L ABSTRACT shown a large collection of late Pleistocene Teeth and metacarpals of early Pliocene (Rancholabrean land-mammal agel ver­ (latest Hemphillian land-mammal age) tebrate fossils from the Tunica Hills of three-toed (hipparionine) horses are de­ Louisiana (Fig. I) by Dr. A. Bradley scribed from the Tunica Hills of West McPherson of Centenary College, Feliciana Parish in east-central Louisiana. Shreveport. McPherson and Mr. Bill Lee An upper molar perta ins to Nannippus of Balon Rouge had collected fossils from minor, known from the Hcmphillian of that area since about 1981. Among the Central and North America, and two teeth standard assemblage of Rancholabrean and two distal metacarpals pertain to a re­ taxa (e.g.
    [Show full text]
  • Mammals from the Mesozoic of Mongolia
    Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977).
    [Show full text]
  • AMERICAN MUSEUM NOVITATES Published by Number 330 Thz Auerican Museum of NAITURAL HISTORY October 30, 1928 New York City
    AMERICAN MUSEUM NOVITATES Published by Number 330 THz AuERicAN MusEUM oF NAITURAL HISTORY October 30, 1928 New York City 56.9,33 (117:51.7) AFFINITIES OF THE MONGOLIAN CRETACEOUS INSECTIVORES' BY GEORGE GAYLORD SIMPSON The unique series of Mesozoic mammal remains found by the Third Asiatic Expedition in Mongolia has now been completely de- scribed in a series of three papers.2 The affinities of the one known multituberculate, Djadochtatherium matthewi, were as thoroughly discussed as the material warrants in the first paper, and no additional remarks seem necessary. The relationships of the more important insectivores, however, were only briefly discussed in the second paper and a review of the evidence, especially including the important new details given in the third paper, suggests some modification and amplification of the views already presented. Not only are these mammal remains by far the most complete ever discovered in the Mesozoic, but they also occupy a very strategic position in time and in space which makes close scrutiny of their relationships essential. In time they occur in the Cretaceous, when, according to theories formed before their discovery and based largely on early Tertiary mammals, the differentiation of the placental orders should be in progress and not yet far advanced. In space they occur in Central Asia in or near the region which a number of students, especially Osborn and Matthew, have considered as an important center of radiation and probably the very one whence came the groups of mammals which appear to have entered North America and Europe suddenly at the beginning of the Tertiary and which must have been undergoing an important deployment during upper Cretaceous time.
    [Show full text]
  • An Alphabetical List of Bromeliad Binomials
    AN ALPHABETICAL LIST OF BROMELIAD BINOMIALS Compiled by HARRY E. LUTHER The Marie Selby Botanical Gardens Sarasota, Florida, USA ELEVENTH EDITION Published by the Bromeliad Society International June 2008 ii INTRODUCTION TO EDITION XI This list is presented as a spelling guide for validly published taxa accepted at the Bromeliad Identification Center. The list contains the following information: 1) Genus number (the left-hand number) based on the systematic sequence published in the Smith & Downs monograph: Bromeliaceae (Flora Neotropica, number 14, parts 1-3; 1974, 1977, 1979). Whole numbers are as published in the monograph. 2) Species number (the second number) according to its systematic position in the monograph. Note: Taxa not included in the monograph or that have been reclassified have been assigned numbers to reflect their systematic position within the Smith & Downs framework (e.g., taxon 14.1 is related to taxon 14). The utility of this method is that one may assume for example that Tillandsia comarapaensis (150.2) is related to T. didisticha (150) and therefore may have certain horticultural qualities in common with that species. 3) Genus and species names follow the respective numbers. 4) Subspecific taxa (subspecies, varieties, forms) names are indented below the species names. Note: Variety "a" (the type variety) is not listed unless it contains a form (see Aechmea caudata ). Similarly, the type form is not listed. 5) Author name follows the specific and subspecific names. These names are included for the convenience of specialist users of the list. This list does not contain publication data or synonymy, as it is not our intent for it to be a technical nomenclatural guide.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]