New Data on the Skull and Dentition in the Mongolian Late Cretaceous Eutherian Mammal Zalambdalestes

Total Page:16

File Type:pdf, Size:1020Kb

New Data on the Skull and Dentition in the Mongolian Late Cretaceous Eutherian Mammal Zalambdalestes NEW DATA ON THE SKULL AND DENTITION IN THE MONGOLIAN LATE CRETACEOUS EUTHERIAN MAMMAL ZALAMBDALESTES JOHN R. WIBLE Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, PA 15206 e-mail: [email protected] MICHAEL J. NOVACEK Division of Paleontology, American Museum of Natural History e-mail: [email protected] GUILLERMO W. ROUGIER Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40292 e-mail: [email protected] BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 281, 144 pp., 58 ®gures, 3 tables Issued January 9, 2004 Copyright q American Museum of Natural History 2004 ISSN 0003-0090 2 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 281 CONTENTS Abstract ....................................................................... 3 Introduction .................................................................... 3 Materials and Methods .......................................................... 5 History of Investigations ......................................................... 7 Comparative Morphology ....................................................... 17 Dentition ................................................................... 17 Upper Incisors ............................................................ 18 Upper Canine ............................................................. 21 Upper Premolars .......................................................... 22 Upper Molars ............................................................. 25 Lower Incisors and Canine ................................................. 28 Lower Premolars .......................................................... 31 Lower Molars ............................................................. 32 Dental Formula ........................................................... 32 Lower Jaw .................................................................. 33 Skull ....................................................................... 37 Nasal-Facial Region ....................................................... 39 Palate .................................................................... 42 Orbitotemporal Region ..................................................... 47 Basicranium and Auditory Region ........................................... 65 Occiput .................................................................. 84 Endocranial Cast .......................................................... 86 Vascular Reconstruction ...................................................... 88 Veins .................................................................... 90 Arteries .................................................................. 91 Discussion .................................................................... 96 Previous Phylogenetic Analyses ............................................... 96 Hu (1993) ................................................................ 96 Archibald (1996) and Nessov et al. (1998) ................................... 97 Rougier et al. (1998) ....................................................... 99 Meng and Wyss (2001) ................................................... 103 Archibald et al. (2001) .................................................... 106 Ji et al. (2002) ........................................................... 109 Comparisons ............................................................... 112 Within Zalambdalestes .................................................... 112 With Barunlestes butleri ................................................... 114 With Kulbeckia kulbecke .................................................. 116 With Leptictids and Insectivorans ........................................... 118 With Rodents, Lagomorphs, and Elephant Shrews ............................ 120 With Asioryctitheres ...................................................... 124 With Zhelestids .......................................................... 129 Conclusions .................................................................. 129 Acknowledgments ............................................................ 131 References ................................................................... 131 Addendum ................................................................... 140 Appendix 1: List of Anatomical Terms .......................................... 141 2004 WIBLE ET AL.: ZALAMBDALESTES 3 ABSTRACT Exquisitely preserved specimens of the Late Cretaceous eutherian Zalambdalestes recently collected from the Djadokhta Formation (Early Campanian) of the Gobi Desert by the Mon- golian Academy of Sciences±American Museum of Natural History Expeditions are the cen- terpiece of a thorough redescription of this taxon's craniodental morphology. Resolved and amended are uncertainties and errors in prior descriptions based on poorer preserved specimens collected by earlier expeditions to the Gobi. Preserved and described for the ®rst time in Zalambdalestes is the basicranium, including an ectotympanic bone and portions of the hyoid arch. Zalambdalestes with a skull length of nearly 50 mm is large compared with other Cretaceous eutherians. It is also highly specialized with a long, thin, tubular snout, large diastemata in the anterior upper dentition, and an elongated mesial lower incisor with restricted enamel. These specializations, though less extreme, are also present in the zalambdalestids Barunlestes from the slightly younger Barun Goyot Formation of the Gobi and Kulbeckia from the late Turonian and Coniacian of Uzbekistan and the Santonian of Tadjikistan. No phylogenetic analysis published to date includes enough taxonomic and morphological breadth to evaluate the relationships of Zalambdalestes. Nevertheless, we investigate the im- pact of our observations on seven phylogenetic analyses published since 1993 that include Zalambdalestes. A comprehensive phylogenetic analysis testing the relationships of Zalamb- dalestes is not included here, but it is expected to result from our ongoing efforts to produce a phylogeny of basal tribosphenic and therian mammals. Currently, zalambdalestids are viewed either as stem eutherians or as having af®nities to Glires (lagomorphs and rodents). Our comparisons with other extinct and extant taxa support a position for Zalambdalestes within Eutheria but outside the crown-group Placentalia. Sup- porting this basal position for Zalambdalestes are such primitive features as the last upper incisor in the maxilla, nasals broadly expanded posteriorly to contact the lacrimals, pterygoids meeting on the midline, and the position of the glenoid fossa on the zygoma and not the braincase proper, in addition to the occurrence of epipubic bones reported previously. Za- lambdalestes shares a number of apomorphies with Asioryctitheria, the clade including the Mongolian Late Cretaceous Asioryctes, Ukhaatherium, and Kennalestes. Among the unusual specializations supporting a zalambdalestid-asioryctithere clade are: the postglenoid foramen anterior rather than posterior to the postglenoid process; the postglenoid and entoglenoid pro- cesses of the squamosal continuous; a fusiform ectotympanic expanded laterally and contacting the entoglenoid process; a suprameatal foramen in the squamosal; a crista interfenestralis connecting from the petrosal promontorium to a ®ngerlike tympanic process behind the round window; a large piriform fenestra in the anterior roof of the tympanic cavity, which transmitted the ramus inferior of the stapedial artery endocranially to the orbit; a foramen ovale between the alisphenoid and squamosal; and a medially positioned internal carotid artery. All but the last two of these specializations are reminiscent of those occurring in various extant lipotyph- lans, including taxa placed by recent DNA sequence analyses within Afrotheria and Eulipo- typhla, and may provide a link between the Mongolian Cretaceous eutherians and lipotyphlans. The available sample of Zalambdalestes exhibits a remarkable degree of individual varia- tion, including the incidence of the upper maxillary incisor, the ®rst upper premolar, and the second lower premolar. The possibility exists that more than a single species, Z. lechei,is represented. INTRODUCTION etons occur in the Upper Cretaceous se- Therian mammals are known from Lower quences of the Gobi Desert in Mongolia. Cretaceous deposits by isolated teeth, jaw These fossil beds were ®rst discovered in the fragments, and petrosals (Slaughter, 1965, 1920s by the American Museum of Natural 1971; Kielan-Jaworowska and Dashzeveg, History Central Asiatic Expeditions (CAE) 1989; Cifelli, 1993, 1999; Wible et al., 1997, led by Roy Chapman Andrews (Gregory and 2001) and now by a nearly complete skeleton Simpson, 1926a, 1926b; Simpson, 1928a, with crushed skull (Ji et al., 2002). However, 1928b). The specimens collected were re- the oldest, nearly complete skulls and skel- ferred by Gregory and Simpson (1926a) to 4 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY NO. 281 two new families of Insectivora, the Delta- high in the quality of representative material. theridiidae, including Deltatheridium, Delta- This is largely due to new specimens of Za- theroides, and Hyotheridium, and the Za- lambdalestes and the closely related genus lambdalestidae, including Zalambdalestes. Barunlestes recovered by the Polish±Mon- Of these, Deltatheridium and Deltatheroides golian Expeditions between 1963 and 1971
Recommended publications
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Mammalian Faunal Succession in the Cretaceous of the Kyzylkum Desert
    Journal of Mammalian Evolution, Vol. 12, Nos. 1/2,C 2005)June 2005 ( DOI: 10.1007/s10914-005-4867-3 A number of typographical errors were introduced during copyediting. All that were found were corrected in this version. Mammalian Faunal Succession in the Cretaceous of the Kyzylkum Desert J. David Archibald1,3 and Alexander O. Averian2 ov Both metatherians and eutherians are known from the Early Cretaceous (Barremian, 125 mya; million years ago) of China, while eutherian-dominated mammalian faunas appeared in Asia at least by the earliest Late Cretaceous (Cenomanian, 95 mya). The approximately 99–93 my old (Cenomanian) Sheikhdzheili l.f. from western Uzbekistan is a small sample of only eutherians, including three zhelestids and a possible zalambdalestoid. The much better-known 90 my old (Turonian) Bissekty l.f. at Dzharakuduk iin central Uzbekistan includes 15 named and un- named species, based on ongoing analyses. Of these, 12 are eutherians represented by at least the three groups—asioryctitheres, zalambdalestids, and zhelestids—plus an eutherian of uncertain position—Paranyctoides. Zalambdalestids and zhelestids have been argued to be related to the origin of the placental gliriforms (Euarchontoglires) and ferungulates (Laurasiatheria), respec- tively. Although there are four previously recognized metatherians, we believe three are referable to the deltatheroid Sulestes karakshi and the fourth, Sailestes quadrans, may belong to Paranyc- toides. There is one multituberculate and one symmetrodont in the Bissekty l.f. While comparably aged (Turonian) localities in North America have somewhat similar non-therians, they have more metatherians and no eutherians. The next younger localities (early Campanian, ∼80 mya) in North America have both a zhelestid and Paranyctoides, suggesting dispersal of eutherians from Asia.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Eutherians Experienced Elevated Evolutionary Rates in the Immediate
    Table S1 – Dates of the Cretaceous geological stages and Cenozoic North American Land Mammal Ages as used for dating the topologies and determining taxon occurrences. STAGE START TIME END TIME STAGE START TIME END TIME BERRIASIAN 145 139.8 TIFFANIAN 60.2 56.8 VALANGINIAN 139.8 132.9 CLARKFORKIAN 56.8 55.8 HAUTERIVIAN 132.9 129.4 WASATCHIAN 55.8 50.3 BARREMIAN 129.4 125 BRIDGERIAN 50.3 46.2 APTIAN 125 113 UINTAN 46.2 42 ALBIAN 113 100.5 DUCHESNEAN 42 38 CENOMANIAN 100.5 93.9 CHADRONIAN 38 33.9 TURONIAN 93.9 89.8 ORELLAN 33.9 30.8 CONIACIAN 89.8 86.3 ARIKAREEAN 30.8 20.6 SANTONIAN 86.3 83.6 HEMINGFORDIAN 20.6 16.3 CAMPANIAN 83.6 72.1 BARSTOVIAN 16.3 13.6 MAASTRICHTIAN 72.1 66 CLARENDONIAN 13.6 10.3 PUERCAN 66 63.3 HEMPHILLIAN 10.3 4.9 TORREJONIAN 63.3 60.2 BLANCAN TO RECENT 4.9 0 Table S2 – Occurrences of each genus in this analysis in the time bins from Table 1. Stage 1 is the Berriasian, Stage 12 the Maastrichtian, Stage 13 the Puercan, and so on. TAXON FIRST STAGE LAST STAGE TAXON FIRST STAGE LAST STAGE Peramus 1 1 Mimatuta 13 13 Deltatheridium 11 12 Desmatoclaenus 13 15 Sheikhdzheilia 6 7 Protoselene 13 15 Avitotherium 11 11 Bunophorus 17 18 Gallolestes 11 11 Diacodexis 17 18 Alostera 11 12 Homacodon 18 20 Parazhelestes 9 9 Hyopsodus 16 20 Aspanlestes 9 11 Meniscotherium 17 17 Zhelestes 8 9 Phenacodus 14 18 Paranyctoides 8 12 Macrocranion 15 20 Batodon 11 12 Alsaticopithecus 18 18 Maelestes 11 11 Teilhardimys 15 18 Bobolestes 6 7 Apheliscus 15 17 Bulaklestes 9 9 Haplomylus 15 19 Daulestes 8 9 Hilalia 18 18 Uchkudukodon 9 9 Orthaspidotherium
    [Show full text]
  • Craniodental Anatomy of a New Late Cretaceous Multituberculate Mammal from Udan Sayr, Mongolia
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2014 Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia. Amir Subhash Sheth University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Anatomy Commons, and the Medical Neurobiology Commons Recommended Citation Sheth, Amir Subhash, "Craniodental anatomy of a new late cretaceous multituberculate mammal from Udan Sayr, Mongolia." (2014). Electronic Theses and Dissertations. Paper 1317. https://doi.org/10.18297/etd/1317 This Master's Thesis is brought to you for free and open access by ThinkIR: The nivU ersity of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The nivU ersity of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Submitted to the Faculty of the School of Medicine of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Anatomical Sciences and Neurobiology University of Louisville Louisville, Kentucky August 2014 CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA By Amir Subhash Sheth B.A., Centre College, 2010 A Thesis Approved on July 18th, 2014 By the Following Thesis Committee: ________________________________ (Guillermo W.
    [Show full text]
  • Mammals from the Mesozoic of Mongolia
    Mammals from the Mesozoic of Mongolia Introduction and Simpson (1926) dcscrihed these as placental (eutherian) insectivores. 'l'he deltathcroids originally Mongolia produces one of the world's most extraordi- included with the insectivores, more recently have narily preserved assemblages of hlesozoic ma~nmals. t)een assigned to the Metatheria (Kielan-Jaworowska Unlike fossils at most Mesozoic sites, Inany of these and Nesov, 1990). For ahout 40 years these were the remains are skulls, and in some cases these are asso- only Mesozoic ~nanimalsknown from Mongolia. ciated with postcranial skeletons. Ry contrast, 'I'he next discoveries in Mongolia were made by the Mesozoic mammals at well-known sites in North Polish-Mongolian Palaeontological Expeditions America and other continents have produced less (1963-1971) initially led by Naydin Dovchin, then by complete material, usually incomplete jaws with den- Rinchen Barsbold on the Mongolian side, and Zofia titions, or isolated teeth. In addition to the rich Kielan-Jaworowska on the Polish side, Kazi~nierz samples of skulls and skeletons representing Late Koualski led the expedition in 1964. Late Cretaceous Cretaceous mam~nals,certain localities in Mongolia ma~nmalswere collected in three Gohi Desert regions: are also known for less well preserved, but important, Bayan Zag (Djadokhta Formation), Nenlegt and remains of Early Cretaceous mammals. The mammals Khulsan in the Nemegt Valley (Baruungoyot from hoth Early and Late Cretaceous intervals have Formation), and llcrmiin 'ISav, south-\vest of the increased our understanding of diversification and Neniegt Valley, in the Red beds of Hermiin 'rsav, morphologic variation in archaic mammals. which have heen regarded as a stratigraphic ecluivalent Potentially this new information has hearing on the of the Baruungoyot Formation (Gradzinslti r't crl., phylogenetic relationships among major branches of 1977).
    [Show full text]
  • SEDIMENTATION of the BARUN GOYOT FORMATION (Plates XXXIV-XLII )
    RYSZARD GRADZINSKI & TOMASZ JERZYKIEWICZ SEDIMENTATION OF THE BARUN GOYOT FORMATION (Plates XXXIV-XLII ) Contents C ontents Pa ge Introduction . 112 Geological setting 112 Stratigraphy . .. 114 Previous work .. .. ... .. 114 Redefinition of the lithostratigraphic divisions. 115 Barun Goyot Formation ... 116 Nemegt Formation. .. .. 116 Relation between the observed profiles . 117 Petrographic description . .. 118 Clay and silt-grade sediments 119 Sand-grade sediments . .. 119 Intraformational gravels . 124 Exotic gravels . 124 Principal sediment types . 125 Flat-bedded sandstone units. 125 Mega cross-stratified units . 127 Massive, "structureless" sandstones. 134 Diversely stratified sandstones . 134 Alternating claystones and sandstones 136 Sedimentological interpretation 136 Occurrence of organic remains 140 Depositional environment . 141 Conclusions 143 Appen dix . 143 References . 144 Abstract. - The Barun Goyot Formation (previously termed Lower Nemegt Beds) is composed of clastic continental sediments of red-beds type; it is probably of Campanian age. The thickness of the formation exceeds 110 m. It is overlain by the Nemegt Formation (previously termed Upper Nemegt Beds), probably of Maast richtian age; the passage between the two format ions is gradual. A formal redefinition of the two Iithostra tigraphic divisions is presented in the paper. Five principal sediment types are distinguished in the Barun Goyot Formation, displaying sedimentary features indicative of various conditions of sedimentation. The lower part of the exposed profile of the Barun Goyot Formation is characterized by mega cross-stratified units, interpreted as dune deposits; they are intertonguing with water-deposited sediments laid in interdune areas. Chan nel deposits, attributed to intermittent streams are subordinate; massive sandstones, probably of various origin are predominating. The upper part of the profile of the formation is characterized by the predominance of flat-bedded sandstone units which were probabl y deposited in an intermittently flooded takyr-like area.
    [Show full text]
  • AMERICAN MUSEUM NOVITATES Published by Number 330 Thz Auerican Museum of NAITURAL HISTORY October 30, 1928 New York City
    AMERICAN MUSEUM NOVITATES Published by Number 330 THz AuERicAN MusEUM oF NAITURAL HISTORY October 30, 1928 New York City 56.9,33 (117:51.7) AFFINITIES OF THE MONGOLIAN CRETACEOUS INSECTIVORES' BY GEORGE GAYLORD SIMPSON The unique series of Mesozoic mammal remains found by the Third Asiatic Expedition in Mongolia has now been completely de- scribed in a series of three papers.2 The affinities of the one known multituberculate, Djadochtatherium matthewi, were as thoroughly discussed as the material warrants in the first paper, and no additional remarks seem necessary. The relationships of the more important insectivores, however, were only briefly discussed in the second paper and a review of the evidence, especially including the important new details given in the third paper, suggests some modification and amplification of the views already presented. Not only are these mammal remains by far the most complete ever discovered in the Mesozoic, but they also occupy a very strategic position in time and in space which makes close scrutiny of their relationships essential. In time they occur in the Cretaceous, when, according to theories formed before their discovery and based largely on early Tertiary mammals, the differentiation of the placental orders should be in progress and not yet far advanced. In space they occur in Central Asia in or near the region which a number of students, especially Osborn and Matthew, have considered as an important center of radiation and probably the very one whence came the groups of mammals which appear to have entered North America and Europe suddenly at the beginning of the Tertiary and which must have been undergoing an important deployment during upper Cretaceous time.
    [Show full text]
  • SUPPLEMENTARY INFORMATION: Tables, Figures and References
    Samuels, Regnault & Hutchinson, PeerJ Evolution of the patellar sesamoid bone in mammals SUPPLEMENTARY INFORMATION: Tables, Figures and References Supplementary Table S1: Mammaliaform patellar status$ Inclusive clades Genus and Stratigraphic age of Patellar Comments# (partial) species (and taxon, and location(s) state reference(s) used for 0/1/2 patellar status) (absent/ ‘patelloid’/ present) Sinoconodonta Sinoconodon Jurassic, China 0 Patellar groove absent, suggests no rigneyi (Kielan- patella Jaworowska et al., 2004) Sinoconodon is included on our phylogeny within tritylodontids. Morganucodonta Megazostrodon Late Triassic, southern 0 rudnerae (Jenkins Africa & Parrington, 1976) Morganucodonta Eozostrodon sp. Late Triassic, Wales 0 Asymmetric patellar groove, (Jenkins et al., specimens disarticulated so it is hard 1976) to assess the patella but appears absent Docodonta Castorocauda 164 Mya, mid-Jurassic, 0 Semi-aquatic adaptations lutrasimilis (Ji et China al., 2006) Docodonta Agilodocodon 164 Mya, mid-Jurassic, 0 scansorius (Meng China et al., 2015) Docodonta Docofossor 160 Mya, China 0 brachydactylus (Luo et al., 2015b) Docodonta Haldanodon 150-155 Mya, Late 0 Shallow patellar groove exspectatus Jurassic, Portugal (Martin, 2005b) Australosphenida Asfaltomylos Mid-Jurassic, South ? Postcranial material absent patagonicus America (Martin, 2005a) Australosphenida Ornithorhynchus Extant 2 Platypus, genome sequenced Monotremata anatinus (Warren, Hillier, Marshall Graves et (Herzmark, 1938; al., 2008) Rowe, 1988) Australosphenida Tachyglossus
    [Show full text]
  • New Late Cretaceous Mammals of Southern Kazakhstan
    New Late Cretaceous mammals of southern Kazakhstan ALEXANDER 0. AVERIANOV Averianov, A.O. 1997. New Late Cretaceous mammals of southern Kazakhstan. -Acta Palaeontologica Polonica 42,2,243-256. Mammalian remains from the lower part of the Darbasa Formation (lower Campanian) at the 'Grey Mesa' locality in the Alymtau Range, southern Kazakhstan, are described. They include ?Bulganbaatar sp. (Multituberculata), Deltatheridiurn nessovi, sp. n. @el- tatheroida), and four eutherians: an undeterminated ?otlestid kemalestoid (?Otlestidae), ?Alymlestes sp. (Zalambdalestidae), ?Aspanlestes sp. (Zhelestidae), and an undetermi- nated eutherian. This new Cretaceous fauna is most similar to that from the Djadokhta Formation in Mongolia and may tentatively confirm an early Campanian age for the latter. Key w o r d s : Mammalia, Cretaceous, Kazakhstan, Mongolia. Alexander 0.Averianov [[email protected]. ru], Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia. Introduction Mesozoic mammals from Kazakhstan are poorly known. The first Mesozoic mammal from Kazakhstan (and the first from the former USSR), found in 1962, is a mandibular fragment with heavily damaged molars, the holotype of Beleutinus orl~vi(?Zalamb- dalestidae), from the Santonian Bostobe Formation at Zhalmauz Well, Kyzyl-Orda Region (Bazhanov 1972). Since that time only three additional mammal remains have been recognized from the Cretaceous of Kazakhstan: a cervical vertebra of a relatively large, undeterminated mammal from the Zhalmauz locality (Nessov & Khisarova 1988); a dentary fragment with p5, ml-3, the holotype of Sorlestes kara (Zhelestidae), from the drilling core penetrating lower Turonian deposits near Ashchikol' Lake, Chimkent Region (Nessov 1993); and a lower molar (ml), the holotype of Alymlestes kielanae (Zalambdalestidae) from the lower part (Campanian) of the Darbasa Forma- tion at the 'Grey Mesa' locality in the Alymtau Range, Chimkent Region (Averianov & Nessov 1995).
    [Show full text]
  • Quantitative Analysis of the Timing of the Origin and Diversification Of
    Journal of Mammalian Evolution, Vol. 8, No. 2, 2001 Quantitative Analysis of the Timing of the Origin and Diversification of Extant Placental Orders J. David Archibald1,2 and Douglas H. Deutschman1 Fossil evidence is consistent with origination and diversification of extant placental orders in the early Tertiary (Explosive Model), and with the possibility of some orders having stem taxa extending into the Cretaceous (Long Fuse Model). Fossil evidence that 15 of 18 extant placental orders appeared and began diversification in the first 16 m.y. of the Cenozoic is, however, at odds with molecular studies arguing some orders diversified up to 40 m.y. earlier in the Early Cretaceous (Short Fuse Model). The quality of the fossil record was assessed by tabulating localities of all mammals in the last 105 m.y. Global locality data (except Africa) for 105 m.y. of eutherian evolution indicate discernible biogeographic patterns by the last 15 m.y. of the Cretaceous. Eutherian genera increase from 11 in latest Cretaceous to 139 in earliest Tertiary, although both are represented by about 50 localities. Yet even in the Late Cretaceous of North America and Asia where eutherians are abundant, none of the 18 extant orders are definitely known. A series of Monte Carlo simulations test whether the rapid appearance of most mammalian orders is statistically significant, and if so, whether it is a radiation event or an artifact of a limited fossil record. Monte Carlo tests affirm that the clustering of appearances in the early Cenozoic is statistically significant. Quantitative analysis of the locality data suggests that the number of genera described is a function of the number of localities sampled.
    [Show full text]