Chemical Hygiene Plan and Safety Manual 2021

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Hygiene Plan and Safety Manual 2021 Emergency Telephone Numbers MIT Massachusetts Institute of Technology Department of Chemistry Department of Chemistry Call 100 for emergency assistance in the event of fires, serious injuries, or chemical spills of particularly hazardous substances. Call 2-EHSS during daytime hours for access to Chemical Hygiene Plan the Environmental Health and Safety Office. and Safety Manual Campus Police 617-253-1212 2021 Medical Department Emergencies 617-253-1311 Chemical Hygiene Plan and Safety Manual Medical Department General Information 617-253-4481 http://web.mit.edu/medical/ Operations Center (FIXIT) 617-253-4948 Safety 617-452-3477 http://web.mit.edu/environment/ehs/general_safety.html Industrial Hygiene 617-452-3477 http://web.mit.edu/environment/ehs/chemical_safety.html Biosafety 617-452-3477 http://web.mit.edu/environment/ehs/biosafety.html Radiation Protection 617-452-3477 http://web.mit.edu/environment/ehs/radiation.html Environmental Management 617-452-3477 http://web.mit.edu/environment/ehs/waste.html 2021 Photos courtesy of Andy Ryan Photography and Liz McGrath massachusetts institute of technology department of chemistry Chemical Hygiene Plan and Safety Manual 2021 Professor Troy Van Voorhis Head, Department of Chemistry Chemistry Department Chemical Hygiene and Safety Committee 2021 Professor Rick L. Danheiser, Chair Scott Ide (EHS Coordinator and Chemical Hygiene Officer) Nile Abularrage (Student Member) Professor Stephen Buchwald Hayden Monroe Carder (Student Member) Professor Christopher Cummins Kyan D'Angelo (Student Member) Dr. John Dolhun (Director, Undergraduate Laboratories) Luis Galindo (Laser Biomedical Research Center) Hanna Moon (Student Member) Professor Mohammad Movassaghi Julius Oppenheim (Student Member) Professor Alexander T. Radosevich Professor Ronald T. Raines Jacob Joshua Lee Rodriguez (Student Member) Professor Gabriela Schlau-Cohen Professor Matthew Shoulders Tara Sverko (Student Member) Dr. Richard Wilk (Administrative Officer) Chemical Hygiene Plan Thirty-first Edition, 2021 Original edition prepared by Professor Rick L. Danheiser with the assistance of Professor Frederick D. Greene, Professor John Essigmann, Marc B. Jones, B. Scott Jaynes, Jill M. Netka, Jennifer L. Robinson and other members of the Chemistry Department Chemical Hygiene Committee Working with Biological Hazards Prepared by Professor John M. Essigmann with the assistance of Lisa Bailey, Timothy Connors, Daniel Treiber, Elizabeth Trimmer, and Jill A. Mello Working with Electrical Hazards Prepared by Professor Hans-Conrad zur Loye Working with Lasers Prepared by Professors Hans-Conrad zur Loye, Moungi Bawendi, and Robert W. Field Working with Radiation and Radioactive Materials Prepared by B. Scott Jaynes Table of Contents Section One: Chemical Hygiene Plan 5 I. Introduction 5 A. Policy ................................................................................................................................. 5 B. Purpose ............................................................................................................................. 5 C. Personnel Covered by this Plan ...................................................................................... 5 Acknowledgment ............................................................................................................. 5 II. Responsibility, Authority, and Resources 6 A. Department Head ............................................................................................................. 6 B. EHS Committee, EHS Coordinator, and Chemical Hygiene Officer ............................ 6 C. Laboratory Supervisors ....................................................................................................7 D. Group EHS Representatives and Fire Wardens ............................................................. 8 E. Employees, Staff, and Research Personnel ................................................................... 8 F. Environmental Health and Safety Office ........................................................................ 9 III. Information and Training 10 A. Initial Training and Refresher Training ..........................................................................10 B. Information on Hazardous Substances ........................................................................ 11 C. Chemical Container Labels ..............................................................................................13 IV. Protective Equipment 14 A. Eye Protection .................................................................................................................14 B. Protective Apparel ..........................................................................................................15 C. Respirators ......................................................................................................................15 D. Laboratory Hoods ...........................................................................................................16 E. Fire Extinguishers, Safety Showers, and Eyewash Facilities.......................................19 F. Photochemical Reactions Using UV Light and Light Emitting Diodes (LEDs) with Blue Light ................................................................................................................20 V. Standard Operating Procedures for Working with Hazardous Substances 21 A. Classes of Hazardous Substances ................................................................................21 B. Risk Assessment for Hazardous Substances .............................................................. 26 C. General Procedures for Working with Toxic Substances ........................................... 27 D. General Procedures for Working with Flammable, Pyrophoric and Explosive Substances ....................................................................................................40 VI. Procedures for Working with Particularly Hazardous Substances 49 A. Identification and Classification of Particularly Hazardous Substances .................. 49 B. Designated Areas ...........................................................................................................52 C. General Procedures for Working with Substances of Moderate to High Chronic Toxicity or High Acute Toxicity .......................................................................53 D. Additional Procedures for Working with Substances of Known High Chronic Toxicity .....................................................................................................55 E. Special Handling Procedures for Some Common Particularly Hazardous Substances ................................................................................................. 57 VII. Prior Approval Requirements 69 A. Prior Approval Requirements for Certain PHSs .......................................................... 69 B. Prior Approval Requirements to Meet DHS Reporting Regulations .......................... 70 C. Restrictions on the Purchase of Certain Chemicals ................................................... 70 D. Prior Approval Requirements for Certain Explosive Compounds ............................. 70 VIII. Toxic Substances Control Act (TSCA) 71 IX. Shipping Hazardous Materials 71 X. Medical Surveillance 72 XI. Researchers with Medical Conditions 72 XII. Accidents and Emergencies 73 A. Organization, Responsibility, and Training .................................................................. 73 B. Emergency Procedures ................................................................................................. 73 C. Laboratory Emergency Information Cards .................................................................. 74 D. Accident Reports ............................................................................................................ 74 XIII. Appendix 76 OSHA LAB STANDARD 29 CFR 1910.1450 .................................................................. 76 Chemical Hygiene Quiz Questions ................................................................................ 83 Section Two: Working with Biological Hazards 85 A. Introduction .................................................................................................................... 85 B. Registration of Personnel Working with Biohazardous Materials ............................. 85 C. Biohazard Classification ................................................................................................ 86 D. Procedures for Personnel Working with Potentially Pathogenic Agents .................. 86 E. Containment of Biohazardous Material ....................................................................... 87 F. Storage, Decontamination, and Disposal of Biohazardous Material ......................... 88 G. Medical Surveillance ...................................................................................................... 89 H. Accidents ........................................................................................................................ 89 Section Three: Working with Electrical Hazards 90 A. Introduction ....................................................................................................................90 Section Four: Working with Lasers 92 A. Introduction .................................................................................................................... 92 B. Laser Classification .......................................................................................................
Recommended publications
  • \\Fscl03\Authoring\Msdgen Docs\Atn\Sdsca\Eu Eng\916058 Urea Ammonium Nitrate Solution
    SAFETY DATA SHEET 1. Identification Product identifier Urea Ammonium Nitrate Solution Other means of identification SDS number KAS_UAN_CA_EN Synonyms UAN 28% Nitrogen, UAN 30% Nitrogen, UAN 32% Nitrogen, UN-28, UN-30, UN-32, URAN, TRI-N-28, TRI-N-30, TRI-N-32, STCC 2871315. Recommended use Fertiliser. Recommended restrictions None known. Manufacturer/Importer/Supplier/Distributor information Manufacturer/Supplier Koch Agronomic Services, LLC 4111 E 37th St N Wichita, KS 67220 US [email protected] 1.866.863.5550 Emergency For Chemical Emergency Call CHEMTREC day or night USA/Canada - 1.800.424.9300 Mexico - 1.800.681.9531 Outside USA/Canada - 1.703.527.3887 (collect calls accepted) 2. Hazard(s) identification Physical hazards Not classified. Health hazards Not classified. Environmental hazards Not classified. Label elements Hazard symbol None. Signal word None. Hazard statement The mixture does not meet the criteria for classification. Precautionary statements Prevention Observe good industrial hygiene practices. Response Wash hands after handling. Storage Store away from incompatible materials. Disposal Dispose of waste and residues in accordance with local authority requirements. Other hazards None known. Supplemental information None. 3. Composition/information on ingredients Mixtures Chemical name CAS number % Ammonium nitrate 6484-52-2 35 - 55 Urea 57-13-6 25 - 40 Water 7732-18-5 15 - 32 Free Ammonia 7664-41-7 0.02 - 0.15 Urea Ammonium Nitrate Solution SDS Canada 916058 Version #: 01 Revision date: - Issue date: 31-January-2017 1 / 7 Composition comments All concentrations are in percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume.
    [Show full text]
  • Chemistry Lab Hygiene Plan
    UNIVERSITY OF MAINE Department of Chemistry CHEMICAL HYGIENE PLAN October, 2001 Contents I. Personal Protective Equipment .. 3 II. Storage of Chemicals .. 6 III. Disposal of Chemicals .. 16 IV. Reading MSDS .. 19 V. Emergencies and the Emergency Action Plan .. 26 VI. Standard Operating Guidelines .. 33 VII. General Housekeeping and Prudent Practices .. 40 2 I. Laboratory Clothing and Personal Protective Equipment A. Dressing for safety in the laboratory Individuals should prepare for a safe laboratory experience by dressing appropriately for laboratory work. Appropriate clothing includes the following: • Shoes should fully cover the feet to protect against spills; no open-toed shoes or sandals are permitted, and shoes with mesh inserts (such as athletic shoes) are not recommended. One may choose to keep a pair of sturdy leather shoes in the laboratory to change into upon arrival. • Trousers or skirts falling below the knee are preferred; if shorter garments are worn, a lab coat or apron of below knee length is required. Preferred materials are resistant polyester, cotton or wool, since ordinary polyester and acrylics may be dissolved by common laboratory solvents. • Neckties, if worn, should be firmly clipped to the shirt or confined inside a lab coat or apron. • Loose, flowing garments and scarves should be avoided; they may easily pick up spills or trail through a burner flame. • In a laboratory where open flames may be used, long hair should be confined. • Loose jewelry should be avoided, since it may catch on equipment. Also avoid ornate rings that can damage protective gloves or make wearing or removing gloves difficult B. Protective Equipment Every laboratory must have available, and workers must be trained in the use of, safety goggles, face masks, lab coats or aprons, gloves, and reaction shields.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Perchloric Acid and Some Organic Perchlorates”
    View Article Online / Journal Homepage / Table of Contents for this issue 4 BURTON AND PRAILL: PERCHLORIC ACID [Vol. 80 Perchloric Acid and Some Organic Perchlorates” BY H. BURTON AND P. F. G. PRAILL (Presented at the W’ngof the Society on Wednesday,July 21st, 1954) The history crf perchlorates is summarised and various methods of pre- paration of the acid are noted. The action of perchloric acid and some organic perchlorates on various types of organic compounds, e.g., anhydrides and ethers, is discussed with particular reference to the formation of, especially, the alkyl perchlorates and related compounds. The simple alkyl esters of Published on 01 January 1955. Downloaded by University of Reading 29/10/2017 13:59:35. perchloric acid have long been known to be highly explosive; in the free state they possess many of the properties of covalent compounds. Con- sequently, when experiments that can lead to their formation are carried out, the risk of serious explosion is always present. GROWINGinterest in the applications of perchloric acid to analytical chemistry makes the recognition of its properties imperative. Perchloric acid and the perchlorates have a notorious reputation; this is due to numerous explosions that have been recorded (Hackl’; Meyer and Spormann2; Kahane3; Zahn4; Balks and Wehrrnann5; Young and Campbell6; and others to be mentioned later) and also to the lack of extensive investigations of their properties. Whilst it is not intended that the hazardous properties of perchloric acid should be belittled, it is thought that a better understanding of its character may dispel some of the fears that have * Much of the chemistry of perchloric acid and perchlorates is summarised in “The Chemical Elements and Their Compounds,” by N.
    [Show full text]
  • 2018 Annual Survey of Biological and Chemical Agents Regulated by Homeland Security (And Carcinogens Regulated by OSHA)
    Name: Dept: Date: 2018 Annual Survey of Biological and Chemical Agents regulated by Homeland Security (and carcinogens regulated by OSHA) Due (date) All labs that do not have a current chemical inventory in Chematix MUST complete this survey. The University is required to make an annual report of all chemicals on the Chemical Facility Anti-Terrorism Standards (CFATS) lists. Additional information regarding the regulations is available on the EH&S website at http://www.safety.rochester.edu/restricted/occsafe/chemicalagent.html and https://www.selectagents.gov. 1. Please review the lists on the following pages and indicate if any are possessed by your lab. The CAS# has been added to the list for ease of searching databases. The CAS# is a Chemical Abstract Service numbering system which assigns a unique number to every chemical substance based on structure; this helps avoid confusion by use of synonyms or different naming conventions. a. If yes for possession, place an X in the applicable box and if requested, include the quantity held in your lab. b. If no, leave blank. 2. After reviewing the list, please complete the information box below (or on last page for possession), then sign, date and return to EH&S. 3. Please call Donna Douglass at 275-2402 if you have any questions. Thank you for your cooperation in collecting data required by the Department of Homeland Security! Possession: 1) Fill in applicable boxes, 2) have PI sign last page, 3) return all pages to Donna Douglass OR Non-possession: 1) Check only one box on the left, 2) sign, 3) return just this page to Donna Douglass I do not have a lab, do not work in a lab, nor do I possess any of the agents in this survey.
    [Show full text]
  • Notable Reactivity of Acetonitrile Towards Li2o2/Lio2 Probed By
    Topics in Catalysis https://doi.org/10.1007/s11244-018-1072-5 ORIGINAL ARTICLE Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge Tatiana K. Zakharchenko1 · Alina I. Belova1 · Alexander S. Frolov1 · Olesya O. Kapitanova1 · Juan‑Jesus Velasco‑Velez2 · Axel Knop‑Gericke2,5 · Denis Vyalikh3,4 · Daniil M. Itkis1 · Lada V. Yashina1 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li 2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2 + MeCN mixture. We have dem- onstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery. Keywords Li–O2 battery · In situ NAP XPS · Acetonitrile · Side reactions 1 Introduction Li–O2 batteries promise extraordinary high specific energy that makes them interesting for the next generation power technologies [1, 2].
    [Show full text]
  • Assessment of Portable HAZMAT Sensors for First Responders
    The author(s) shown below used Federal funds provided by the U.S. Department of Justice and prepared the following final report: Document Title: Assessment of Portable HAZMAT Sensors for First Responders Author(s): Chad Huffman, Ph.D., Lars Ericson, Ph.D. Document No.: 246708 Date Received: May 2014 Award Number: 2010-IJ-CX-K024 This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this Federally- funded grant report available electronically. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice. Assessment of Portable HAZMAT Sensors for First Responders DOJ Office of Justice Programs National Institute of Justice Sensor, Surveillance, and Biometric Technologies (SSBT) Center of Excellence (CoE) March 1, 2012 Submitted by ManTech Advanced Systems International 1000 Technology Drive, Suite 3310 Fairmont, West Virginia 26554 Telephone: (304) 368-4120 Fax: (304) 366-8096 Dr. Chad Huffman, Senior Scientist Dr. Lars Ericson, Director UNCLASSIFIED This project was supported by Award No. 2010-IJ-CX-K024, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice. This document is a research report submitted to the U.S. Department of Justice. This report has not been published by the Department. Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • TPN Electrolytes (Multiple Electrolyte Additive)
    SAFETY DATA SHEET Product Name: TPN Electrolytes (Multiple Electrolyte Additive) 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Manufacturer Name And Hospira, Inc. Address 275 North Field Drive Lake Forest, Illinois 60045 USA Emergency Telephone CHEMTREC: North America: 800-424-9300; International 1-703-527-3887; Australia - 61-290372994; UK - 44-870-8200418 Hospira, Inc., Non-Emergency 224 212-2000 Product Name TPN Electrolytes (Multiple Electrolyte Additive) Synonyms NA 2. HAZARD(S) IDENTIFICATION Emergency Overview TPN Electrolytes (Multiple Electrolyte Additive) is a concentrated solution of intra- and extracellular ions for intravenous infusion after dilution. In clinical use, this product is used to maintain normal cellular metabolism by supplying sodium, calcium, potassium, magnesium, chloride and acetate to the body during total parenteral nutrition (TPN). In the workplace, this material should be considered potentially irritating to the eyes and respiratory tract. Based on clinical use, possible target organs include the nervous system, the cardiovascular system, and muscles. U.S. OSHA GHS Classification Physical Hazards Hazard Class Hazard Category Not Classified Not Classified Health Hazards Hazard Class Hazard Category Eye Damage / Irritation 2B Label Element(s) Pictogram NA Signal Word Warning Hazard Statement(s) Causes eye irritation Precautionary Statement(s) Prevention Do not breathe vapor or spray Wash hands thoroughly after handling Response Get medical attention if you feel unwell. IF IN EYES: Rinse cautiously with
    [Show full text]
  • ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP
    Scientific Documentation ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.05 16.October.2020 ET107, Dehydrated Alcohol, 200 Proof, Undenatured, USP Table of Contents Product Specification Certificate of Analysis Sample(s) Safety Data Sheet (SDS) Certification of Current Good Manufacturing Practices (cGMP) Manufacturing Process Flowchart Source Statement BSE/TSE Statement Allergen Statement EU Fragrance Allergen Statement GMO Statement Melamine Statement Nitrosamine Statement Animal Testing Statement Organic Compliance Statement Shelf Life Statement Other Chemicals Statement Elemental Impurities Statement Residual Solvents Statement General Label Information – Sample Label General Lot Numbering System Guidance Kosher Certificate Specification for Dehydrated Alcohol, 200 Proof, Undenatured, USP (ET107) Item Number ET107 Item Dehydrated Alcohol, 200 Proof, Undenatured, USP CAS Number 64-17-5 Molecular Formula C2H5OH Molecular Weight 46.07 MDL Number Synonyms Absolute Ethyl Alcohol ; Anhydrous Ethanol ; Ethanol ; Grain Derived Alcohol Test Specification Min Max ASSAY (by VOLUME) 99.5 % NOT MORE OPALESENT CLARITY OF SOLUTION THAN STANDARD NOT MORE INTENSE THAN COLOR OF SOLUTION STANDARD ACIDITY OR ALKALINITY SOLUTION IS PINK SPECIFIC GRAVITY @ 15.56oC 0.7962 UV ABSORPTION: 240 nm 0.40 250 - 260 nm 0.30 270 - 340 nm 0.10 ORGANIC IMPURITIES: METHANOL 200 μL/L ACETALDEHYDE AND ACETAL 10 μL/L BENZENE 2 μL/L SUM OF ALL OTHER IMPURITIES 300 μL/L LIMIT OF NONVOLATILE RESIDUE 2.5 mg ELEMENTAL IMPURITIES AS REPORTED IDENTIFICATION A 0.7962 SPECTRUM MATCHES IDENTIFICATION B REFERENCE IDENTIFICATION (C) LIMIT OF METHANOL 200 μL/L CERTIFIED KOSHER APPEARANCE EXPIRATION DATE DATE OF MANUFACTURE RESIDUAL SOLVENTS AS REPORTED CLASS 3 (solvent) / 1-PROPANOL .
    [Show full text]
  • Silver Perchlorate
    Aug. 20, 1937 SILVERPERCHLORATE AND NITRATE COMPLEXES WITH ALKYNES 434 I refractive index corresponds with that of a mixture contain- method for the separation of a-pinene and &pinene from ing 51.1% a-pinene. each other. The mixture, 2.05 g., was treated with silver perchlorate, Preparation of Silver Nitrate-Cyclohexene Complex.l5- 0.75 e., and left to stand at 25' for 7 hr., when the products Silver nitrate, 3.6 g., was dissolved in a warm mixture of were-separated by the method described abo;e. The cyclohexene, 15 ml., and ethanol, 2 ml. At room tempera- liquid, 1.00 g. (49%), distilled from the mixture had aZ5D ture a system of two colorless phases was formed, and at 0" +30.7", ~Z~LD1.4662. These figures correspond with those the lower phase gave a mass of needle-shaped crystals. of a mixture of a-pinene with @-pinenecontaining 78.3 and Filtration at ca. 4' gave 4.6 g. of product, m.p. 24-32'. 78.2y0 a-pinene, respectively. The liquid, 0.60 g. (297c), Anal. Calcd. for AgNOs.2CsHio: Ag, 32.3. Found: obtained by treating the solid phase with water, 2 ml., had Ag, 33.2, 33.3. aZ5~-14.7', n25~1.4756. These figures correspond with Pinenes and Silver Nitrate.-Attempts to obtain a solid those of a mixture cmtaining 92.2 and %.lyO8-pinene, re- complex were unsuccessful with pinene (practical) or pinene spectively. The agreement between the two methods of diluted with a solvent, for example, acetone, methanol or analysis for both fractions confirms that no chemical change ethanol.
    [Show full text]