Words Should Be Fun: Scrabble As a Tool for Language Preservation in Tuvan and Other Local Languages1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
8 CHAPTER 2 THEORETICAL FRAMEWORK in Order to Discuss
CHAPTER 2 THEORETICAL FRAMEWORK In order to discuss and analyse the research, this chapter provides several essential theories needed about Scrabble, Zyzzyva, and Morphology. 2.1 SCRABBLE This section will introduce more about Scrabble to give readers deeper view and insight. Furthermore, this section will be discussing the history of Scrabble, explaining the game details, and finally elaborating the rules of playing the game. 2.1.1 The History of Scrabble Alfred Mosher Butts, an out-of-work architect from Poughkeepsie, New York, invented Scrabble during the Great Depression. Butts divided games into three categories: number games (dice and bingo), move games (chess and checkers), and word games (anagrams). He enjoyed anagrams and crosswords a lot that he created a game with both feature and named it LEXIKO, the game was later called CRISS CROSS WORDS (National Scrabble Association, 2012). 8 9 Figure 2.1 Alfred Mosher Butts Originally, the game was played by forming words using letter tiles and placing them on a crossword-concept board, the length of the word determined the score. After Burr studied the letter occurrence on the front page of the New York Times, the point of each letter tile was valued based on the frequency of the letters appeared in that newspaper (Halpern & Wai, 2007). 10 Figure 2.2 Criss Cross Words,an early version of Scrabble game Butts’ invention has been rejected by several established game manufactures until he met James Brunot, a game-loving entrepreneur who liked the concept and the idea of the game. They both finally made some refinements on the rules and the name SCRABBLE was created. -
Questions These Questions Are in a Specific Order. 1. What Is Scrabble
Questions Re: The Game of Scrabble Radio Interview - 14th March 2019 - 2AIRFM These questions are in a specific order. 1. What is Scrabble? 2:30 sec. 2. Who invented it? 1:40 sec 3. Why is it called Scrabble? 30 sec 4. Why play Scrabble? 1:30 sec 5. Why should I join a Scrabble Club? 2:30 sec 6. What dictionary should I use? 3:00 mins. 7. Why are there weird words in the Scrabble Dictionary? 3:00 mins 8. What should I know? 2:30 sec 9. What is a good score in Scrabble? 1 min 10. How can I improve my Scrabble score? 1 min 11. How did you get interested in Scrabble? 1 min That’s eleven questions the volume has been turned up to 11! These are some suggestions for songs to be played between breaks:- Words of love – the Beatles G.L.O.R.I.A. - Them featuring Van Morrison Words - the Bee Gees V.A.C.A.T.I.O.N. - Connie Francis Words - Neil Young D.I.V.O.R.C.E. - Tammy Wynette https://soundcloud.com/user147680538/community-interview-14th-march-2019 1. What is Scrabble? The game of Scrabble has been around since 1933 in one form or another in Western society, so I’ve always thought that everyone would have least heard of it. It wasn’t until recently that I realised there are people out there who don’t know what it is. Oddly enough, one of my relatives who is a very worldly character having run various clubs in his day, whom you would have thought was very knowledgeable brought this fact home to me, he was unaware of what it is. -
THE ART of Puzzle Game Design
THE ART OF Puzzle Design Scott Kim & Alexey Pajitnov with Bob Bates, Gary Rosenzweig, Michael Wyman March 8, 2000 Game Developers Conference These are presentation slides from an all-day tutorial given at the 2000 Game Developers Conference in San Jose, California (www.gdconf.com). After the conference, the slides will be available at www.scottkim.com. Puzzles Part of many games. Adventure, education, action, web But how do you create them? Puzzles are an important part of many computer games. Cartridge-based action puzzle gamse, CD-ROM puzzle anthologies, adventure game, and educational game all need good puzzles. Good News / Bad News Mental challenge Marketable? Nonviolent Dramatic? Easy to program Hard to invent? Growing market Small market? The good news is that puzzles appeal widely to both males and females of all ages. Although the market is small, it is rapidly expanding, as computers become a mass market commodity and the internet shifts computer games toward familiar, quick, easy-to-learn games. Outline MORNING AFTERNOON What is a puzzle? Guest Speakers Examples Exercise Case studies Question & Design process Answer We’ll start by discussing genres of puzzle games. We’ll study some classic puzzle games, and current projects. We’ll cover the eight steps of the puzzle design process. We’ll hear from guest speakers. Finally we’ll do hands-on projects, with time for question and answer. What is a Puzzle? Five ways of defining puzzle games First, let’s map out the basic genres of puzzle games. Scott Kim 1. Definition of “Puzzle” A puzzle is fun and has a right answer. -
Can You Change MAN to APE? Computers Can
Can a Computer Solve a Word Puzzle? - or - Can You Change MAN to APE? Computers can add; they can store numbers; they can solve equations. But word puzzles ask for abilities we don't usually associate with computers. Can we apply computational thinking to these unusual problems? To do so, we have to understand how we solve these puzzles, and identify those parts of our thought processes that can be \explained" to a computer. Computational Thinking In this discussion, we will look at a simple word puzzle. If we think about how we solve such puzzles, we can identify some mental pro- cesses (human thinking) that a computer would have to mimic: • memory: we need to know a lot of words; • imagination: we need to imagine possible changes to a word; • evaluation: given several possible changes, we need to choose the one most likely to take us to our goal; • backtracking: when a choice doesn't work out, we need to backtrack and search for an alternate choice; If we want a computer to solve these puzzles, we have to understand how we do them first, and then try to translate our thinking into computational thinking. DOUBLETS: Invented by Lewis Carroll DOUBLETS: Invented by Lewis Carroll Lewis Carroll, who wrote the children's book \Alice in Wonderland", was very fond of word games and puzzles. He asked a riddle that no one has solved: Why is a raven like a writing desk?. He wrote poems like Jabberwocky full of nonsense words, a few of which were absorbed into English: burbled and gallumphing. -
Prueba Específica De Certificación De Nivel Avanzado C1 De Inglés. Junio 2019
ESCUELAS OFICIALES DE IDIOMAS DEL PRINCIPADO DE ASTURIAS PRUEBA ESPECÍFICA DE CERTIFICACIÓN DE NIVEL AVANZADO C1 DE INGLÉS. JUNIO 2019 Comisión de Evaluación de la EOI de COMPRENSIÓN DE TEXTOS ESCRITOS Puntuación total /20 puntos Calificación /10 puntos Apellidos: Nombre: DNI/NIE: LEA LAS SIGUIENTES INSTRUCCIONES A continuación va a realizar una prueba que contiene tres ejercicios de comprensión de textos escritos. Los ejercicios tienen la siguiente estructura: se presentan unos textos y se especifican unas tareas que deberá realizar en relación a dichos textos. Las tareas o preguntas serán del siguiente tipo: Opción múltiple: preguntas o frases incompletas, seguidas de una serie de respuestas posibles o de frases que las completan. En este caso deberá elegir la respuesta correcta rodeando con un círculo la letra de su opción en la HOJA DE RESPUESTAS. Sólo una de las opciones es correcta. Ejemplo: 1 A B C Si se confunde, tache la respuesta equivocada y rodee la opción que crea verdadera. 1 A B C Pregunta de relacionar. Se presentan una serie de proposiciones que deberá relacionar con su respuesta correspondiente de entre las proporcionadas. En este caso deberá elegir la respuesta correcta y escribir la letra de su opción en la HOJA DE RESPUESTAS. Ejemplo: 1 A B C D E Si se confunde, tache la respuesta equivocada y rodee la opción que crea verdadera. 1 A B C D E Pregunta de Verdadero / Falso. Se presentan una serie de preguntas y se deberá decidir si la información facilitada es verdadera o falsa. Ejemplo: 1 True False Si se confunde, tache la respuesta equivocada y rodee la opción que crea verdadera. -
Consonants, Vowels and Letter Frequency Stephen J
This article was downloaded by:[Canadian Research Knowledge Network] On: 8 January 2008 Access Details: [subscription number 789349985] Publisher: Psychology Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Language and Cognitive Processes Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713683153 Transposed-letter effects: Consonants, vowels and letter frequency Stephen J. Lupker a; Manuel Perea b; Colin J. Davis c a University of Western Ontario, London, ON, Canada b Universitat de València, València, Spain c Royal Holloway University of London, Egham, UK Online Publication Date: 01 January 2008 To cite this Article: Lupker, Stephen J., Perea, Manuel and Davis, Colin J. (2008) 'Transposed-letter effects: Consonants, vowels and letter frequency', Language and Cognitive Processes, 23:1, 93 - 116 To link to this article: DOI: 10.1080/01690960701579714 URL: http://dx.doi.org/10.1080/01690960701579714 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
Letter Frequency Analysis of Languages Using Latin Alphabet
International Linguistics Research; Vol. 1, No. 1; 2018 ISSN 2576-2974 E-ISSN 2576-2982 https://doi.org/10.30560/ilr.v1n1p18 Letter Frequency Analysis of Languages Using Latin Alphabet Gintautas Grigas1 & Anita Juškevičienė1 1 Institute of Data Science and Digital Technologies, Vilnius University, Lithuania Correspondence: Anita Juškevičienė, Institute of Data Science and Digital Technologies, Vilnius University, Akademijos str. 4, LT-08663, Vilnius, Lithuania. Tel: 370-5210-9314. E-mail: [email protected], [email protected] Received: February 23, 2018; Accepted: March 8, 2018; Published: March 26, 2018 Abstract The evaluation of the peculiarities of alphabets, particularly the frequency of letters is essential when designing keyboards, analysing texts, designing alphabet-based games, and doing some text mining. Thus, it is important to determine what might be useful for designers of text input tools, and of other technologies related to sets of letters. Knowledge of common features among different languages gives an opportunity to take advantage of the experience of other languages. Nowadays an increasing amount of texts is published on the Internet. In order to adequately compare the frequencies of letters in different languages used in the online space, Wikipedia texts have been selected as a source material for investigation. This paper presents the Method of the Adjacent Letter Frequency Differences in the frequency line, which helps to evaluate frequency breakpoints. This is a uniform evaluation criterion for 25 main languages using Latin script in order to highlight the similarities and differences among them. Research focuses on the letter frequency analysis in the area of rarely used native letters and frequently used foreign letters in a particular language. -
Shift Cipher Substitution Cipher Vigenère Cipher Hill Cipher
Lecture 2 Classical Cryptosystems Shift cipher Substitution cipher Vigenère cipher Hill cipher 1 Shift Cipher • A Substitution Cipher • The Key Space: – [0 … 25] • Encryption given a key K: – each letter in the plaintext P is replaced with the K’th letter following the corresponding number ( shift right ) • Decryption given K: – shift left • History: K = 3, Caesar’s cipher 2 Shift Cipher • Formally: • Let P=C= K=Z 26 For 0≤K≤25 ek(x) = x+K mod 26 and dk(y) = y-K mod 26 ʚͬ, ͭ ∈ ͔ͦͪ ʛ 3 Shift Cipher: An Example ABCDEFGHIJKLMNOPQRSTUVWXYZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 • P = CRYPTOGRAPHYISFUN Note that punctuation is often • K = 11 eliminated • C = NCJAVZRCLASJTDQFY • C → 2; 2+11 mod 26 = 13 → N • R → 17; 17+11 mod 26 = 2 → C • … • N → 13; 13+11 mod 26 = 24 → Y 4 Shift Cipher: Cryptanalysis • Can an attacker find K? – YES: exhaustive search, key space is small (<= 26 possible keys). – Once K is found, very easy to decrypt Exercise 1: decrypt the following ciphertext hphtwwxppelextoytrse Exercise 2: decrypt the following ciphertext jbcrclqrwcrvnbjenbwrwn VERY useful MATLAB functions can be found here: http://www2.math.umd.edu/~lcw/MatlabCode/ 5 General Mono-alphabetical Substitution Cipher • The key space: all possible permutations of Σ = {A, B, C, …, Z} • Encryption, given a key (permutation) π: – each letter X in the plaintext P is replaced with π(X) • Decryption, given a key π: – each letter Y in the ciphertext C is replaced with π-1(Y) • Example ABCDEFGHIJKLMNOPQRSTUVWXYZ πBADCZHWYGOQXSVTRNMSKJI PEFU • BECAUSE AZDBJSZ 6 Strength of the General Substitution Cipher • Exhaustive search is now infeasible – key space size is 26! ≈ 4*10 26 • Dominates the art of secret writing throughout the first millennium A.D. -
An Improved Arabic Keyboard Layout
Sci.Int.(Lahore),33(1),5-15,2021 ISSN 1013-5316; CODEN: SINTE 8 5 AN IMPROVED ARABIC KEYBOARD LAYOUT 1Amjad Qtaish, 2Jalawi Alshudukhi, 3Badiea Alshaibani, 4Yosef Saleh, 5Salam Bazrawi College of Computer Science and Engineering, University of Ha'il, Ha'il, Saudi Arabia. [email protected], [email protected], [email protected], [email protected], [email protected] ABSTRACT: One of the most important human–machine interaction (HMI) systems is the computer keyboard. The keyboard layout (KL) dictates how a person interacts with a physical keyboard through the way in which the letters, numbers, punctuation marks, and symbols are mapped and arranged on the keyboard. Mapping letters onto the keys of a keyboard is complex because many issues need to be taken into considerations, such as the nature of the language, finger fatigue, hand balance, typing speed, and distance traveled by fingers during typing and finger movements. There are two main kinds of KL: English and Arabic. Although numerous research studies have proposed different layouts for the English keyboard, there is a lack of research studies that focus on the Arabic KL. To address this lack, this study analyzed and clarified the limitations of the standard legacy Arabic KL. Then an efficient Arabic KL was proposed to overcome the limitations of the current KL. The frequency of Arabic letters and bi-gram probabilities were measured on a large Arabic corpus in order to assess the current KL and to design the improved Arabic KL. The improved Arabic KL was then evaluated and compared against the current KL in terms of letter frequency, finger-travel distance, hand and finger balance, bi-gram frequency, row distribution, and most frequent words. -
Cryptology: an Historical Introduction DRAFT
Cryptology: An Historical Introduction DRAFT Jim Sauerberg February 5, 2013 2 Copyright 2013 All rights reserved Jim Sauerberg Saint Mary's College Contents List of Figures 8 1 Caesar Ciphers 9 1.1 Saint Cyr Slide . 12 1.2 Running Down the Alphabet . 14 1.3 Frequency Analysis . 15 1.4 Linquist's Method . 20 1.5 Summary . 22 1.6 Topics and Techniques . 22 1.7 Exercises . 23 2 Cryptologic Terms 29 3 The Introduction of Numbers 31 3.1 The Remainder Operator . 33 3.2 Modular Arithmetic . 38 3.3 Decimation Ciphers . 40 3.4 Deciphering Decimation Ciphers . 42 3.5 Multiplication vs. Addition . 44 3.6 Koblitz's Kid-RSA and Public Key Codes . 44 3.7 Summary . 48 3.8 Topics and Techniques . 48 3.9 Exercises . 49 4 The Euclidean Algorithm 55 4.1 Linear Ciphers . 55 4.2 GCD's and the Euclidean Algorithm . 56 4.3 Multiplicative Inverses . 59 4.4 Deciphering Decimation and Linear Ciphers . 63 4.5 Breaking Decimation and Linear Ciphers . 65 4.6 Summary . 67 4.7 Topics and Techniques . 67 4.8 Exercises . 68 3 4 CONTENTS 5 Monoalphabetic Ciphers 71 5.1 Keyword Ciphers . 72 5.2 Keyword Mixed Ciphers . 73 5.3 Keyword Transposed Ciphers . 74 5.4 Interrupted Keyword Ciphers . 75 5.5 Frequency Counts and Exhaustion . 76 5.6 Basic Letter Characteristics . 77 5.7 Aristocrats . 78 5.8 Summary . 80 5.9 Topics and Techniques . 81 5.10 Exercises . 81 6 Decrypting Monoalphabetic Ciphers 89 6.1 Letter Interactions . 90 6.2 Decrypting Monoalphabetic Ciphers . -
Hasbro Announces the 12Th Annual National School SCRABBLE TOURNAMENT to Take Place April 26-27 in Providence, RI
February 20, 2014 Hasbro Announces the 12th Annual National School SCRABBLE TOURNAMENT to Take Place April 26-27 in Providence, RI Students Compete for $10,000 Prize PAWTUCKET, R.I.--(BUSINESS WIRE)-- It's time for kids to C-O-M-P-E-T-E for the title of National School SCRABBLE Champion! The 2014 National School SCRABBLE TOURNAMENT, hosted by Hasbro, Inc. (NASDAQ: HAS), will take place April 26-27 at the company's new Providence, RI facility, One Hasbro Place. Young SCRABBLE enthusiasts, in fourth through eighth grades, are invited to compete once again for the $10,000 top prize. The National School SCRABBLE TOURNAMENT brings together contestants from across the U.S. and Canada and features the youngest and best SCRABBLE students. Students who compete in the tournament are generally members of a School SCRABBLE Club where they learn the rules of the game, practice their vocabulary, and learn the benefits of teamwork. Parents, teachers and coaches can go to: www.schoolscrabble.us to learn more about the event and to register students for the tournament. Registration costs $100 per team and will be open from now until April 11, 2014. The final round of this year's tournament will be broadcast live online using the innovative RFID SCRABBLE System from Mind Sports (International). The system utilizes custom built RFID technology and unique software that scans the board every 974 milliseconds to transmit the game to a live-stream on the web that showcases each teams tile rack, score breakdown as well as the ‘Best Word' that each team can play at any given point. -
Research in Education
Letter Name Learning in Early Childhood Literacy Letter naming is a strong predictor (along with phonological awareness) of phonics acquisition and reading fluency (Evans, Bell, Shaw, Moretti, & Page, 2006; National Reading Panel, 2000; Treiman, Weatherston, & Berch, 1994; Stage, Shepard, Davidson, & Browning, 2001). Letter Name Learning is a Constrained Reading Skill. Scope – Finite set of 26 letters (52 with upper and lower case) Learning curve is steep Time period is relatively brief Importance – Centrality to process of becoming a reader Typicality of the process of becoming a reader Range of Influence Limited to the process of developing decoding automaticity Found in the earliest stages of literacy development Letter Name Learning is a Constrained Reading Skill Unequal Learning – Some letter names and sounds are learned more easily, quickly and deeply than others. Result of unequal exposure rates to letter names and sounds. Mastery – Letter name learning is mastered early, quickly and completely. Universality – Letter name learning needs to be learned by all learners. Letter name learning is composed of identical information or learning elements. Letter Name Learning is a Constrained Reading Skill Codependency Previously reported positive correlations between “constrained” early reading skills and later acquisition of “unconstrained” reading skills are not shown to remain stable at later points in reading development or skill acquisition. Letter Name Learning time should be constrained Letter name learning is not the end-all, be-all of early literacy instruction. Copious amounts of instructional time also be allocated for students to build rich networks of world knowledge and word meanings . Six Stances or Guided Principles for Letter Name Learning 1.