Radioactive Particles in the Environment: Sources, Particle Characterization and Analytical Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Radioactive Particles in the Environment: Sources, Particle Characterization and Analytical Techniques spine 5,5 mm IAEA-TECDOC-1663 Radioactive particles in the Environment: Sources, Particle Characterization and Analytical Techniques INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–119010–9 ISSN 1011–4289 Radioactive particles in the Environment: Sources, Particle Characterization and Analytical Techniques The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NORWAY ALBANIA GREECE OMAN ALGERIA GUATEMALA PAKISTAN ANGOLA HAITI PALAU ARGENTINA HOLY SEE PANAMA ARMENIA HONDURAS PARAGUAY AUSTRALIA HUNGARY PERU AUSTRIA ICELAND PHILIPPINES AZERBAIJAN INDIA POLAND BAHRAIN INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ REPUBLIC OF MOLDOVA BELGIUM IRELAND ROMANIA BELIZE ISRAEL RUSSIAN FEDERATION BENIN ITALY SAUDI ARABIA BOLIVIA JAMAICA BOSNIA AND HERZEGOVINA JAPAN SENEGAL BOTSWANA JORDAN SERBIA BRAZIL KAZAKHSTAN SEYCHELLES BULGARIA KENYA SIERRA LEONE BURKINA FASO KOREA, REPUBLIC OF SINGAPORE BURUNDI KUWAIT SLOVAKIA CAMBODIA KYRGYZSTAN SLOVENIA CAMEROON LATVIA SOUTH AFRICA CANADA LEBANON SPAIN CENTRAL AFRICAN LESOTHO SRI LANKA REPUBLIC LIBERIA SUDAN CHAD LIBYAN ARAB JAMAHIRIYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI THE FORMER YUGOSLAV CÔTE D’IVOIRE MALAYSIA REPUBLIC OF MACEDONIA CROATIA MALI TUNISIA CUBA MALTA TURKEY CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO GREAT BRITAIN AND DOMINICAN REPUBLIC MONGOLIA NORTHERN IRELAND ECUADOR MONTENEGRO EGYPT MOROCCO UNITED REPUBLIC EL SALVADOR MOZAMBIQUE OF TANZANIA ERITREA MYANMAR UNITED STATES OF AMERICA ESTONIA NAMIBIA URUGUAY ETHIOPIA NEPAL UZBEKISTAN FINLAND NETHERLANDS VENEZUELA FRANCE NEW ZEALAND VIETNAM GABON NICARAGUA YEMEN GEORGIA NIGER ZAMBIA GERMANY NIGERIA ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA-TECDOC-1663 RADIOACTIVE PARTICLES IN THE ENVIRONMENT: SOURCES, PARTICLE CHARACTERIZATION AND ANALYTICAL TECHNIQUES INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2011 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Sales and Promotion, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books For further information on this publication, please contact: Terrestrial Environment Laboratory International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria email: [email protected] RADIOACTIVE PARTICLES IN THE ENVIRONMENT: SOURCES, PARTICLE CHARACTERIZATION AND ANALYTICAL TECHNIQUES IAEA, VIENNA, 2011 IAEA-TECDOC-1663 ISBN 978-92-0-119010-9 ISSN 1011-4289 © IAEA, 2011 Printed by the IAEA in Austria August 2011 FOREWORD Over the years, radioactive particles have been released to the environment from nuclear weapons testing and nuclear fuel cycle operations. However, measurements of environmental radioactivity and any associated assessments are often based on the average bulk mass or surface concentration, assuming that radionuclides are homogeneously distributed as simple ionic species. It has generally not been recognised that radioactive particles present in the environment often contain a significant fraction of the bulk sample activity, leading to sample heterogeneity problems and false and/or erratic measurement data. Moreover, the inherent differences in the transport and bioavailability of particle bound radionuclides compared with those existing as molecules or ions have largely been ignored in dose assessments. To date, most studies regarding radionuclide behaviour in the soil-plant system have dealt with soluble forms of radionuclides. When radionuclides are deposited in a less mobile form, or in case of a superposition of different physico-chemical forms, the behaviour of radionuclides becomes much more complicated and extra efforts are required to provide information about environmental status and behaviour of radioactive particles. There are currently no documents or international guides covering this aspect of environmental impact assessments. To fill this gap, between 2001 and 2008 the IAEA performed a Coordinated Research Programme (CRP- G4.10.03) on the ‘Radiochemical, Chemical and Physical Characterization of Radioactive Particles in the Environment’ with the objective of development, adoption and application of standardized analytical techniques for the comprehensive study of radioactive particles. The CRP was in line with the IAEA project intended to assist the Member States in building capacity for improving environmental assessments and for management of sites contaminated with radioactive particles. This IAEA-TECDOC presents the findings and achievements of the above CRP in the area of measurement and characterisation of radioactive particles in the environment. Ten IAEA Member States, namely Denmark, Finland, Hungary, Israel, Kazakhstan, Norway, Russian Federation, Spain, Ukraine, the UK, the USA and the EC Institute of Transuranium Elements (ITU) participated in the CRP. The IAEA acknowledges to contributions of all the participants and mentoring by Prof. Brit Salbu. The IAEA also wishes to express its gratitude to N. Vajda for her kind assistance in editing and preparating this publication for publishing, as well as to all the contributors to the IAEA-TECDOC and those who assisted in its drafting and review. The IAEA officer responsible for this publication was S. Fesenko of the Department of Nuclear Sciences and Applications, IAEA Environment Laboratories. EDITORIAL NOTE The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS 1. INTRODUCTION ......................................................................................................................... 1 1.1. BACKGROUND .................................................................................................................... 1 1.2. OBJECTIVES ......................................................................................................................... 3 1.3. SCOPE .................................................................................................................................... 3 1.4. STRUCTURE ......................................................................................................................... 3 2. SOURCES OF RADIOACTIVE PARTICLES IN THE ENVIRONMENT ................................. 4 2.1. NUCLEAR WEAPONS TESTS ............................................................................................. 4 2.2. NUCLEAR FUEL CYCLE ..................................................................................................... 6 2.2.1. Accidental releases from nuclear reactors ............................................................ 6 2.2.2. Releases from nuclear reactors under normal operation ....................................... 8 2.2.3. Releases from reprocessing plants ........................................................................ 9 2.3. OTHER SOURCES OF RADIOACTIVE PARTICLES ...................................................... 10 3. ANALYTICAL TECHNIQUES TO STUDY RADIOACTIVE PARTICLES ........................... 11 3.1. IDENTIFICATION AND ISOLATION OF RADIOACTIVE PARTICLES ...................... 11 3.1.1. Identification of the presence of radioactive particles ........................................ 11 3.1.2. Particle location and re-location ......................................................................... 13 3.1.3. Particle isolation, micromanipulation ................................................................. 14 3.2. NUCLEAR ANALYTICAL TECHNIQUES TO STUDY RADIOACTIVE PARTICLES ................................................................................................................. 15 3.2.1. Gamma spectrometry .......................................................................................... 15 3.2.2. Beta counting .....................................................................................................
Recommended publications
  • History and Development of the Communication Regulatory
    HISTORY AND DEVELOPMENT OF THE COMMUNICATION REGULATORY AGENCY IN BOSNIA AND HERZEGOVINA 1998 – 2005 A thesis presented to the faculty of the College of Communication of Ohio University In partial fulfillment of the requirements for the degree Master of Arts Adin Sadic March 2006 2 This thesis entitled HISTORY AND DEVELOPMENT OF THE COMMUNICATION REGULATORY AGENCY IN BOSNIA AND HERZEGOVINA 1998 – 2005 by ADIN SADIC has been approved for the School of Telecommunications and the College of Communication by __________________________________________ Gregory Newton Associate Professor of Telecommunications __________________________________________ Gregory Shepherd Interim Dean, College of Communication 3 SADIC, ADIN. M.A. March 2006. Communication Studies History and Development of the Communication Regulatory Agency in Bosnia and Herzegovina 1998 – 2005 (247 pp.) Director of Thesis: Gregory Newton During the war against Bosnia and Herzegovina (B&H) over 250,000 people were killed, and countless others were injured and lost loved ones. Almost half of the B&H population was forced from their homes. The ethnic map of the country was changed drastically and overall damage was estimated at US $100 billion. Experts agree that misuse of the media was largely responsible for the events that triggered the war and kept it going despite all attempts at peace. This study examines and follows the efforts of the international community to regulate the broadcast media environment in postwar B&H. One of the greatest challenges for the international community in B&H was the elimination of hate language in the media. There was constant resistance from the local ethnocentric political parties in the establishment of the independent media regulatory body and implementation of new standards.
    [Show full text]
  • Skopje, 2021 ANALYSIS: Media Freedom and Journalists’ Safety in RNM Through the Prism of Existing Legal Solutions – HOW to REACH BETTER SOLUTIONS? IMPRESUM
    BALKAN CIVIL SOCIETY DEVELOPMENT NETWORK Skopje, 2021 ANALYSIS: Media freedom and journalists’ safety in RNM through the prism of existing legal solutions – HOW TO REACH BETTER SOLUTIONS? IMPRESUM Title Analysis: Media freedom and journalists’ safety in RNM through the prism of existing legal solutions – How to reach better solutions? Publisher Association of Journalists of Macedonia Project Promoting dialogue between journalists’ associations and Western Balkan parliaments for stronger civil society sector English translation Kristina Naceva Graphic design Grafotrejd doo Skopje Print Grafotrejd doo Skopje Circulation 25 Disclaimer This document is prepared within the Project “Protecting Civic Space – Regional Civil Society Development Hub” financed by Sida and implemented by BCSDN. The content of this document, and the information and views presented do not represent the official positions and opinions of Sida and BCSDN. Responsibility for the information and views expressed in this document lies entirely with the author(s). Skopje, 2021 CONTENTS 1. Introduction..................................................... 7 2. Criminal Code ................................................... 9 2.1. Ineffective legal solutions and institutional constraints.......10 3. Media regulation – freedom and independence of audiovisual media ...........................................17 3.1. Law on AVMS – state advertising threat to editorial policy.....17 3.2. Violated financial independence is violation of thefreedom of MRT ........................................................19
    [Show full text]
  • Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
    Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig.
    [Show full text]
  • Testing the Stand-Alone Microbeam at Columbia University G
    Radiation Protection Dosimetry Advance Access published December 21, 2006 Radiation Protection Dosimetry (2006), 1 of 5 doi:10.1093/rpd/ncl454 TESTING THE STAND-ALONE MICROBEAM AT COLUMBIA UNIVERSITY G. GartyÃ, G. J. Ross, A. W. Bigelow, G. Randers-Pehrson and D. J. Brenner Columbia University, Radiological Research Accelerator Facility, 136 S. Broadway, Irvington, NY 10533, USA The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a ‘home made’ 6.5 mCi polonium source, a 1 alpha particle s–1,10lm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here. INTRODUCTION AND OVERALL DESIGN the lenses. In addition to providing a secondary user facility at RARAF, the design is simple and Columbia University’s Radiological Research Accel- inexpensive enough that the SAM can be reproduced erator Facility (RARAF) currently offers its users in any large radiation biology laboratory.
    [Show full text]
  • Effects of Eutrophication on Stream Ecosystems
    EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms.
    [Show full text]
  • Microscale Ecology Regulates Particulate Organic Matter Turnover in Model Marine Microbial Communities
    ARTICLE DOI: 10.1038/s41467-018-05159-8 OPEN Microscale ecology regulates particulate organic matter turnover in model marine microbial communities Tim N. Enke1,2, Gabriel E. Leventhal 1, Matthew Metzger1, José T. Saavedra1 & Otto X. Cordero1 The degradation of particulate organic matter in the ocean is a central process in the global carbon cycle, the mode and tempo of which is determined by the bacterial communities that 1234567890():,; assemble on particle surfaces. Here, we find that the capacity of communities to degrade particles is highly dependent on community composition using a collection of marine bacteria cultured from different stages of succession on chitin microparticles. Different particle degrading taxa display characteristic particle half-lives that differ by ~170 h, comparable to the residence time of particles in the ocean’s mixed layer. Particle half-lives are in general longer in multispecies communities, where the growth of obligate cross-feeders hinders the ability of degraders to colonize and consume particles in a dose dependent manner. Our results suggest that the microscale community ecology of bacteria on particle surfaces can impact the rates of carbon turnover in the ocean. 1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2 Department of Environmental Systems Science, ETH Zurich, Zürich 8092, Switzerland. Correspondence and requests for materials should be addressed to O.X.C. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2743 | DOI: 10.1038/s41467-018-05159-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05159-8 earning how the composition of ecological communities the North Pacific gyre20.
    [Show full text]
  • Characterization of Plutonium Particles Originating from the BOMARC Accident -1960
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-2010 Characterization of plutonium particles originating from the BOMARC accident -1960 Richard Charles Gostic University of Nevada Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Environmental Chemistry Commons, Environmental Health and Protection Commons, Nuclear Commons, and the Radiochemistry Commons Repository Citation Gostic, Richard Charles, "Characterization of plutonium particles originating from the BOMARC accident -1960" (2010). UNLV Theses, Dissertations, Professional Papers, and Capstones. 313. http://dx.doi.org/10.34917/1537163 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CHARACTERIZATION OF PLUTONIUM PARTICLES ORIGINATING FROM THE BOMARC ACCIDENT - 1960 By Richard Charles Gostic Bachelor of Science Dowling College
    [Show full text]
  • SERBIA Jovanka Matić and Dubravka Valić Nedeljković
    SERBIA Jovanka Matić and Dubravka Valić Nedeljković porocilo.indb 327 20.5.2014 9:04:47 INTRODUCTION Serbia’s transition to democratic governance started in 2000. Reconstruction of the media system – aimed at developing free, independent and pluralistic media – was an important part of reform processes. After 13 years of democratisation eff orts, no one can argue that a new media system has not been put in place. Th e system is pluralistic; the media are predominantly in private ownership; the legal framework includes European democratic standards; broadcasting is regulated by bodies separated from executive state power; public service broadcasters have evolved from the former state-run radio and tel- evision company which acted as a pillar of the fallen autocratic regime. However, there is no public consensus that the changes have produced more positive than negative results. Th e media sector is liberalized but this has not brought a better-in- formed public. Media freedom has been expanded but it has endangered the concept of socially responsible journalism. Among about 1200 media outlets many have neither po- litical nor economic independence. Th e only industrial segments on the rise are the enter- tainment press and cable channels featuring reality shows and entertainment. Th e level of professionalism and reputation of journalists have been drastically reduced. Th e current media system suff ers from many weaknesses. Media legislation is incom- plete, inconsistent and outdated. Privatisation of state-owned media, stipulated as mandato- ry 10 years ago, is uncompleted. Th e media market is very poorly regulated resulting in dras- tically unequal conditions for state-owned and private media.
    [Show full text]
  • Plankton Community Composition, Organic Carbon and Thorium-234 Particle Size Distributions, and Particle Export in the Sargasso Sea
    Journal of Marine Research, 67, 845–868, 2009 Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea by H. S. Brew1, S. B. Moran1,2, M. W. Lomas3 and A. B. Burd4 ABSTRACT Measurements of plankton community composition (eight planktonic groups), particle size- fractionated (10, 20, 53, 70, and 100-␮m Nitex screens) distributions of organic carbon (OC) and 234Th, and particle export of OC and 234Th are reported over a seasonal cycle (2006–2007) from the Bermuda Atlantic Time-Series (BATS) site. Results indicate a convergence of the particle size distributions of OC and 234Th during the winter-spring bloom period (January–March, 2007). The observed convergence of these particle size distributions is directly correlated to the depth-integrated abundance of autotrophic pico-eukaryotes (r ϭ 0.97, P Ͻ 0.05) and, to a lesser extent, Synechococcus (r ϭ 0.85, P ϭ 0.14). In addition, there are positive correlations between the sediment trap flux of OC and 234Th at 150 m and the depth-integrated abundance of pico-eukaryotes (r ϭ 0.94, P ϭ 0.06 for OC, and r ϭ 0.98, P Ͻ 0.05 for 234Th) and Synechococcus (r ϭ 0.95, P ϭ 0.05 for OC, and r ϭ 0.94, P ϭ 0.06 for 234Th). An implication of these observations and recent modeling studies (Richardson and Jackson, 2007) is that, although small in size, pico-plankton may influence large particle export from the surface waters of the subtropical Atlantic.
    [Show full text]
  • Actual Problems Актуальные Проблемы
    АКАДЕМИЯ НАУК АВИАЦИИ И ВОЗДУХОПЛАВАНИЯ РОССИЙСКАЯ АКАДЕМИЯ КОСМОНАВТИКИ ИМ. К.Э.ЦИОЛКОВСКОГО ACADEMY OF AVIATION AND AERONAUTICS SCIENCES RUSSIAN ASTRONAUTICS ACADEMY OF K.E.TSIOLKOVSKY'S NAME СССР 7 195 ISSN 1727-6853 12.04.1961 АКТУАЛЬНЫЕ ПРОБЛЕМЫ АВИАЦИОННЫХ И АЭРОКОСМИЧЕСКИХ СИСТЕМ процессы, модели, эксперимент 2(39) 2014 RUSSIAN-AMERICAN SCIENTIFIC JOURNAL ACTUAL PROBLEMS OF AVIATION AND AEROSPACE SYSTEMS processes, models, experiment УРНАЛ УЧНЫЙ Ж О-АМЕРИКАНСКИЙ НА ОССИЙСК Р Казань Daytona Beach А К Т УА Л Ь Н Ы Е П Р О Б Л Е М Ы А В И А Ц И О Н Н Ы Х И А Э Р О К О С М И Ч Е С К И Х С И С Т Е М Казань, Дайтона Бич Вып. 2 (39), том 19, 1-206, 2014 СОДЕРЖАНИЕ CONTENTS Г.В.Новожилов 1 G.V.Novozhilov К 120-летию авиаконструктора To the 120-th Anniversary of Сергея Владимировича Ильюшина Sergey Vladimirovich Ilyushin А.Болонкин 14 A.Bolonkin Использование энергии ветра Utilization of wind energy at high больших высот altitude Эмилио Спедикато 46 Emilio Spedicato О моделировании взаимодействия About modelling interaction of Earth Земли с крупным космическим with large space object: the script with объектом: сценарий взрыва Фаэтона explosion of Phaeton and the sub- и последующей эволюции sequent evolution of Mankind (part II) Человечества (часть II) М.В.Левский 76 M.V.Levskii Оптимальное по времени The time-optimal control of motion of a управление движением spacecraft with inertial executive космического аппарата с devices инерционными исполнительными органами В.А.Афанасьев, А.С.Мещанов, 99 V.A.Afanasyev, A.S.Meshchanov, Е.Ю.Самышева
    [Show full text]
  • Application of Tetraether Membrane Lipids As Proxies for Continental Climate
    Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Application of tetraether membrane lipids as proxies for continental climate reconstruction in Iberian and Siberian lakes Marina Escala Pascual Tesi doctoral Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Application of tetraether membrane lipids as proxies for continental climate reconstruction in Iberian and Siberian lakes Memòria presentada per Marina Escala Pascual per optar al títol de Doctor per la Universitat Autònoma de Barcelona, sota la direcció del doctor Antoni Rosell Melé. Marina Escala Pascual Abril 2009 Cover photograph: Lake Baikal (Jens Klump, Continent Project) Als meus pares i al meu germà. INDEX Acknowledgements .................................................................................i Abstract .................................................................................................iii Resum ....................................................................................................iv Chapter 1 Introduction 1.1. Paleoclimate and biomarker proxies ....................................................3 1.2. Distribution of Archaea in freshwater environments ........................5 1.3. Origin and significance of GDGTs .......................................................9 1.4. Calibration of GDGT-based proxies ..................................................14 1.5. Objective and outline of this thesis ....................................................19 Chapter 2 Methodology 2.1.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]