The Role of 15-Lipoxygenase-1- and Cyclooxygenase-2-Derived Lipid Mediators in Endothelial Cell Proliferation

Total Page:16

File Type:pdf, Size:1020Kb

The Role of 15-Lipoxygenase-1- and Cyclooxygenase-2-Derived Lipid Mediators in Endothelial Cell Proliferation University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Summer 2010 The Role of 15-Lipoxygenase-1- and Cyclooxygenase-2-Derived Lipid Mediators in Endothelial Cell Proliferation Cong Wei University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Medicinal Chemistry and Pharmaceutics Commons, and the Pharmacology Commons Recommended Citation Wei, Cong, "The Role of 15-Lipoxygenase-1- and Cyclooxygenase-2-Derived Lipid Mediators in Endothelial Cell Proliferation" (2010). Publicly Accessible Penn Dissertations. 219. https://repository.upenn.edu/edissertations/219 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/219 For more information, please contact [email protected]. The Role of 15-Lipoxygenase-1- and Cyclooxygenase-2-Derived Lipid Mediators in Endothelial Cell Proliferation Abstract It is a generally accepted paradigm that there is a direct link between inflammation and tumor progression. During inflammation, there is increased formation of lipid hydroperoxides, mediated either non-enzymatically by reactive oxygen species or enzymatically by lipoxygenases (LOs) or cyclooxygenases (COXs). Lipid hydroperoxides undergo further oxidation into oxo-eicosatetraenoic acids (oxo-ETEs), which are produced and released by cells including macrophages and epithelial cells. Therefore, these oxo-ETEs could potentially mediate biological effects in an autocrine and/or a paracrine manner. In addition, oxo-ETEs conjugate intracellular glutathione (GSH) to form adducts which could serve as biomarkers of oxo-ETE formation. In this study, a targeted lipidomics approach combined with stable isotope dilution methodology was employed to identify and quantify lipid hydroperoxides and their metabolites formed in 15-LO-expressing mouse macrophage cell line (R15L cells) and COX-2 expressing cell models (RIES cells and Caco-2 cells) as well as in mouse hematocytes and primary human monocytes. 15-Oxo-5,8,11,13-(Z,Z,Z,E)-ETE (15-oxo- ETE) was identified and characterized as a major eicosanoid produced in both mouse and human macrophage 15-LO pathway. 15-Oxo-ETE was shown to be a metabolite of arachidonic acid (AA)-derived 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). A novel biological activity of 15-oxo-ETE was revealed, which involved inhibition of human umbilical vein endothelial cell (HUVEC) proliferation by suppressing DNA synthesis, implicating a potential anti- angiogenic role of 15-oxo-ETE. In addition to 15-oxo-ETE, another AA-derived eicosanoid 11-oxo-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (11-oxo-ETE), was identified as a major metabolite arising from COX-2-derived from 11(R)- hydroxyl-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (11(R)-HETE) in both rat (RIES) and human (Caco-2) epithelial cell lines. A specific liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS) method revealed that both 11-oxo-ETE and 15-oxo-ETE were secreted in nM concentrations when AA was added to RIES and human Caco-2 cells. Surprisingly, 11(R)-HETE was an excellent substrate for 15-PGDH, with a catalytic efficiency similaro t that found for 15(S)-HETE. In addition, it was demonstrated that aspirin significantly stimulated the production of 15(R)-HETE, which was then converted to 15-oxo-ETE by an unknown dehydrogenase (DH). These findings could have significant clinical implications since 15-PGDH is down-regulated during carcinogenesis, which in addition to increasing the pro-proliferative activity of PGE2 would prevent the formation of anti-proliferative 15-oxo- ETE from 15(S)-HETE. However, the formation of 15-oxo-ETE from 15(R)-HETE after aspirin treatment, through a pathway that does not involve 15-PGDH, could help counteract the increased pro-proliferative activity of PGE2. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) First Advisor Dr. Ian A. Blair Keywords LIPID MEDIATORS, 15-LIPOXYGENASE-1, CYCLOOXYGENASE-2, ENDOTHELIAL CELL PROLIFERATION, 15-OXO-ETE, 11-OXO-ETE Subject Categories Medicinal Chemistry and Pharmaceutics | Pharmacology This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/219 THE ROLE OF 15-LIPOXYGENASE-1- AND CYCLOOXYGENASE-2-DERIVED LIPID MEDIATORS IN ENDOTHELIAL CELL PROLIFERATION Cong Wei A DISSERTATION In Pharmacological Sciences Presented to the Faculties of the University of Pennsylvania In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2010 Supervisor of Dissertation _____________________ Ian A. Blair, Ph.D. A. N. Richards Professor of Pharmacology Graduate Group Chairperson _____________________ Vladimir R. Muzykantov, M.D., Ph.D. Associate Professor of Pharmacology and Medicine Dissertation Committee Harry Ischiropoulos, Ph.D., Research Professor of Pediatrics and Pharmacology Ellen Puré, Ph.D., Professor of Pharmacology George H. Rothblat, Ph.D., Professor of Pediatrics Alexander Steven Whitehead, Ph.D., Professor of Pharmacology DEDICATION On the last day before I came to the United States for my Ph.D. study, I learned the names of my grandparents. This thesis is dedicated to them and my beloved parents Ziqing Wei & Shuzhen Li Lianren He & Weiben Zhou and Ruidong Wei & Xinglin He ii ACKNOWLEDGMENTS I give endless thanks to my thesis advisor and mentor Dr. Ian A. Blair, who has provided me with tremendous inspiration, guidance, and support. His wisdom, generosity and scientific knowledge have been instilled into my Ph.D. journey to make it an extremely great experience, and will continuously boost my motivation in my future career. I would like to thank all the past and current members of Blair lab for their advice, support and friendship over the years. I owe particular thanks to Drs. Wenying Jian, Seon Hwa Lee, and Peijuan Zhu who have brought me and trained me in the field of biomarkers and LC-MS since the very beginning. I am especially grateful to Drs. Suhong Zhang and Jasbir Arora who have generously provided their expertise to help with my studies. I am also grateful to Dr. Clementina Mesaros, with whom I shared with a lot of trouble-shooting on the instruments. I would like to give special thanks to Xiaojing Liu and Catherine Huang who provided generous assistance on the completion of my work. Without all the help and support, my thesis work would not be possible. I am particularly grateful to my dissertation committee chair Dr. Harry Ischiropoulos, who has provided me with his invaluable insight, suggestions and support since before my preliminary exam. I would like to thank Dr. Ellen Puré and Dr. George Rothblat for being my committee members giving constructive advice and the pleasant research collaborations. I would also like to thank Dr. Steve Whitehead for his time and support through my studies. iii I am so grateful to Dr. Tian J. Yang for his generous support to my thesis studies during my internship at Hoffman-La Roche. I would like to thank Dr. Vladimir Muzykantov and Dr. Vladimir Shuvaev for providing important materials as well as their inspiring suggestions for my studies. I would also like to thank Dr. Klaus Kaestner for his training during my laboratory rotation and the ongoing support. I would like to thank Christine Shwed, Linda LeRoy, Mary Scott and Sarah Squire for their help throughout the years in the Pharmacology Program at Penn. I have been graced with incredible friendships during my time here, and I am very grateful to all my friends and relatives during my Ph.D. journey. Special thanks go to Dr. Diana Ye and her husband Bruce Au, Dr. Michael Pollack and his wife Judith, Jie Gao and his wife Mei Long, Jiansheng Huang and his wife Qi Wu, Minhao Xue and her husband John McGurk, Stefanie Khartulyari, Dr. Arnaldo Diaz, Dr. Xuan Dai, Dr. Ginny Weibel, Michelle Joshi, Dr. Michelle Kinder, Zhuo Ye, Jing Hu, Yun Wang, Michelle Chang, Hongmei Li, and Mei Liu. Their help, caring about me, sharing ups and downs with me as well as all the fun time together have helped me go through the graduate life more easily. Last but not least, I am deeply indebted to my parents Ruidong Wei and Xinglin He. Their unconditional love and always being there supporting have led me to the science palace, and made my Ph.D. journey much more meaningful. iv ABSTRACT THE ROLE OF 15-LIPOXYGENASE-1- AND CYCLOOXYGENASE-2-DERIVED LIPID MEDIATORS IN ENDOTHELIAL CELL PROLIFERATION Cong Wei Ian A. Blair, Ph.D. Supervisor of Dissertation It is a generally accepted paradigm that there is a direct link between inflammation and tumor progression. During inflammation, there is increased formation of lipid hydroperoxides, mediated either non-enzymatically by reactive oxygen species or enzymatically by lipoxygenases (LOs) or cyclooxygenases (COXs). Lipid hydroperoxides undergo further oxidation into oxo-eicosatetraenoic acids (oxo-ETEs), which are produced and released by cells including macrophages and epithelial cells. Therefore, these oxo-ETEs could potentially mediate biological effects in an autocrine and/or a paracrine manner. In addition, oxo-ETEs conjugate intracellular glutathione (GSH) to form adducts which could serve as biomarkers of oxo-ETE formation. In this study, a targeted lipidomics approach combined with stable isotope dilution methodology was employed to identify and quantify lipid hydroperoxides and their metabolites formed in 15-LO-expressing mouse macrophage cell line (R15L cells) and COX-2 expressing cell models (RIES cells and Caco-2 cells) as well as in mouse hematocytes and primary human monocytes. 15-Oxo-5,8,11,13-(Z,Z,Z,E)-ETE (15-oxo- ETE) was identified and characterized as a major eicosanoid produced in both mouse and v human macrophage 15-LO pathway. 15-Oxo-ETE was shown to be a metabolite of arachidonic acid (AA)-derived 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) by 15- hydroxyprostaglandin dehydrogenase (15-PGDH). A novel biological activity of 15-oxo- ETE was revealed, which involved inhibition of human umbilical vein endothelial cell (HUVEC) proliferation by suppressing DNA synthesis, implicating a potential anti- angiogenic role of 15-oxo-ETE.
Recommended publications
  • Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila Melanogaster
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila melanogaster Yan Qi Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/94 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila melanogaster by Yan Qi A dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i © 2014 Yan Qi All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. _______ ______________________ Date Chair of Examining Committee Dr. Shaneen Singh, Brooklyn College _______ ______________________ Date Executive Officer Dr. Laurel A. Eckhardt ______________________ Dr. Peter Lipke, Brooklyn College ______________________ Dr. Shubha Govind, City College ______________________ Dr. Richard Magliozzo, Brooklyn College ______________________ Dr. Evros Vassiliou, Kean University Supervising Committee The City University of New York iii Abstract Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila melanogaster by Yan Qi Mentor: Shaneen Singh Eicosanoids are biologically active molecules oxygenated from twenty carbon polyunsaturated fatty acids.
    [Show full text]
  • Open Thesis Master Document V5.0.Pdf
    The Pennsylvania State University The Graduate School Department of Veterinary and Biomedical Science IDENTIFICATION OF ENDOGENOUS MODULATORS FOR THE ARYL HYDROCARBON RECEPTOR A Thesis in Genetics by Christopher R. Chiaro © 2007 Christopher R. Chiaro Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December, 2007 The thesis of Christopher R. Chiaro was reviewed and approved* by the following: Gary H. Perdew John T. and Paige S. Smith Professor in Agricultural Sciences Thesis Advisor Chair of Committee C. Channa Reddy Distinguished Professor of Veterinary Science A. Daniel Jones Senior Scientist Department of Chemistry John P. Vanden Heuvel Professor of Veterinary Science Richard Ordway Associate Professor of Biology Chair of Genetics Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor capable of being regulated by a structurally diverse array of chemicals ranging from environmental carcinogens to dietary metabolites. A member of the basic helix-loop- helix/ Per-Arnt-Sim (bHLH-PAS) super-family of DNA binding regulatory proteins, the AhR is an important developmental regulator that can be detected in nearly all mammalian tissues. Prior to ligand activation, the AhR resides in the cytosol as part of an inactive oligomeric protein complex comprised of the AhR ligand-binding subunit, a dimer of the 90 kDa heat shock protein, and a single molecule each of the immunophilin like X-associated protein 2 (XAP2) and p23 proteins. Functioning as chemosensor, the AhR responds to both endobiotic and xenobiotic derived chemical ligands by ultimately directing the expression of metabolically important target genes.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • GT Lauram.Sc Thesis (FINAL)
    OPTIMIZATION OF OVER-EXPRESSION AND PURIFICATION OF HUMAN LEUKOTRIENE C4 SYNTHASE MUTANT R104A FOR STRUCTURE-FUNCTION STUDIES BY TWO-DIMENSIONAL CRYSTALLIZATION AND ELECTRON CRYSTALLOGRAPHY A Thesis Presented to The Academic Faculty by Laura Yaunhee Kim In Partial Fulfillment of the Requirements for the Degree Master of Science in the School of Biology Georgia Institute of Technology December 2012 OPTIMIZATION OF OVER-EXPRESSION AND PURIFICATION OF HUMAN LEUKOTRIENE C4 SYNTHASE MUTANT R104A FOR STRUCTURE-FUNCTION STUDIES BY TWO-DIMENSIONAL CRYSTALLIZATION AND ELECTRON CRYSTALLOGRAPHY Approved by: Dr. Ingeborg Schmidt-Krey, Advisor School of Biology School of Chemistry and Biochemistry Georgia Institute of Technology Dr. Thomas DiChristina School of Biology Georgia Institute of Technology Dr. Raquel L. Lieberman School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: July 24, 2012 I dedicate this work to my father Sun Dong Kim, mother In Ok Kim, and sister Esther Kim, who have supported me from the very beginning. This work could not have been completed without your love and encouragement. ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Inga Schmidt-Krey, for guiding and supporting me throughout my academic studies. I would like to thank her for her consistent availability and scientific input during every step of research. Without her guidance this work would not have been possible. I am in debt to my family and friends for their unflinching support and encouragement, without which none of this would be possible. I am also very grateful to all the Schmidt-Krey lab members, especially Matthew Johnson and Maureen Metcalfe, for their support and input into this work.
    [Show full text]
  • Evaluation of the Allometric Exponents in Prediction of Human Drug Clearance
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2014 Evaluation of the Allometric Exponents in Prediction of Human Drug Clearance Da Zhang Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Other Pharmacy and Pharmaceutical Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3533 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Da Zhang, 2014 All Rights Reserve EVALUATION OF THE ALLOMETRIC EXPONENTS IN PREDICTION OF HUMAN DRUG CLEARANCE A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University By Da Zhang Master of Science, University of Arizona, 2004 Director: F. Douglas Boudinot, Ph.D. Professor, School of Pharmacy, VCU Virginia Commonwealth University Richmond, Virginia August, 2014 ACKNOWLEDGEMENTS First and foremost, I would like to sincerely thank my advisor, Dr. F. Douglas Boudinot, for giving me the opportunity to pursue graduate studies under his guidance and for his continuous professional support, guidance, encouragement and patience throughout my graduate program. He was always delighted in sharing his vast knowledge and kind warmth. I would also like to thank Dr. Ahmad for his scientific advice and support through the complet ion of my degree. He has been a kind and helpful mentor for me. I would like to acknowledge my graduate committee members, Drs.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,642.925 B2 Chauhan Et Al
    USOO9642925B2 (12) United States Patent (10) Patent No.: US 9,642.925 B2 Chauhan et al. (45) Date of Patent: May 9, 2017 (54) MAGNETIC NANOPARTICLE Brasseur et al. Water-soluble aluminium phthalocyanine-polymer FORMULATIONS, METHODS FOR MAKING conjugates for PDT. photodynamic activities and pharmacokinetics in tumour-bearing mice. 1999 Br. J. Cancer 80: 1533-1541.* SUCH FORMULATIONS, AND METHODS Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, FOR THEIR USE protection, functionalization, and application. Angew Chem Int Ed (75) Inventors: Subhash Chauhan, Sioux Falls, SD Engl 2007:46:1222-44. (US); Meena Jaggi, Sioux Falls, SD Ito A, Shinkai M. Honda H. Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng2005: 100: 1 (US); Murali Mohan Yallapu, Sioux 11. Falls, SD (US) Saiyed Z, Telang S. Ramchand C. Application of magnetic tech (73) Assignee: Sanford Research/USD, Sioux Falls, niques in the field of drug discovery and biomedicine. Biomagn Res Technol 2003; 1:2. SD (US) Zhang L. Yu F, Cole AJ, Chertok B, David AE, Wang J, et al. Gum (*) Notice: Subject to any disclaimer, the term of this arabic-coated magnetic nanoparticles for potential application in patent is extended or adjusted under 35 simultaneous magnetic targeting and tumor imaging. Aaps J 2009; 11:693-9. U.S.C. 154(b) by 719 days. Johannsen M. Gneveckow U., Eckelt L. Feussner A, Waldofner N, (21) Appl. No.: 13/884,625 Scholz R. et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. (22) PCT Filed: Feb. 7, 2011 IntJ Hyperthermia 2005:21:637-47.
    [Show full text]
  • 9 Glutathione S-Transferases
    Enzyme Systems that Metabolise Drugs and Other Xenobiotics. Edited by Costas Ioannides Copyright # 2001 John Wiley & Sons Ltd ISBNs: 0-471-894-66-4 %Hardback); 0-470-84630-5 %Electronic) 9 Glutathione S-transferases Philip J. Sherratt and John D. Hayes University of Dundee, UK Introduction Glutathione S-transferase GST; EC 2.5.1.18) isoenzymes are ubiquitously distributed in nature, being found in organisms as diverse as microbes, insects, plants, ®sh, birds andmammals Hayes andPulford1995). The transferases possess various activities andparticipate in several differenttypes of reaction. Most of these enzymes can catalyse the conjugation of reduced glutathione GSH) with compounds that contain an electrophilic centre through the formation of a thioether bondbetween the sulphur atom of GSH and the substrate Chasseaud 1979; Mannervik 1985). In addition to conjugation reactions, a number of GST isoenzymes exhibit other GSH-dependent catalytic activities including the reduction of organic hydroperoxides Ketterer et al. 1990) andisomerisation of various unsaturatedcompoundsBenson et al. 1977; Jakoby andHabig 1980). These enzymes also have several non-catalytic functions that relate to the sequestering of carcinogens, intracellular transport of a wide spectrum of hydrophobic ligands, and modulation of signal transduction pathways Listowsky 1993; Adler et al. 1999; Cho et al. 2001). Glutathione S-transferases represent a complex grouping of proteins. Two entirely distinct superfamilies of enzyme have evolved that possess transferase activity Hayes andStrange 2000). The ®rst enzymes to be characterisedwere the cytosolic, or soluble, GSTs BoylandandChasseaud1969; Mannervik 1985). To dateat least 16 members of this superfamily have been identi®ed in humans Board et al. 1997, 2000; Hayes and Strange 2000).
    [Show full text]
  • Role of Leukotrienes on Protozoan and Helminth Infections
    Hindawi Publishing Corporation Mediators of Inflammation Volume 2012, Article ID 595694, 13 pages doi:10.1155/2012/595694 Review Article Role of Leukotrienes on Protozoan and Helminth Infections Alexandre P. Rogerio1 and Fernanda F. Anibal2 1 Laboratory of Experimental Immunopharmacology, Federal University of Trianguloˆ Mineiro, Rua Vigario´ Carlos, 162. 38025-380 Uberaba, MG, Brazil 2 Department of Morphology and Pathology, Federal University of Sao˜ Carlos, Rodovia Washington Luis, km 235 Caixa Postal 676, 13565-905 Sao˜ Carlos, SP, Brazil Correspondence should be addressed to Alexandre P. Rogerio, [email protected] Received 15 November 2011; Accepted 30 January 2012 Academic Editor: Carlos Henrique Serezani Copyright © 2012 A. P. Rogerio and F. F. Anibal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Leukotrienes (LTs), formed by the 5-lipoxygenase-(5-LO-) catalyzed oxidation of arachidonic acid, are lipid mediators that have potent proinflammatory activities. Pharmacologic or genetic inhibition of 5-LO biosynthesis in animals is associated with increased mortality and impaired clearance of bacteria, fungi, and parasites. LTs play a role in the control of helminth and protozoan infections by modulating the immune system and/or through direct cytotoxicity to parasites; however, LTs may also be associated with pathogenesis, such as in cerebral malaria and schistosomal granuloma. Interestingly, some proteins from the saliva of insect vectors that transmit protozoans and secreted protein from helminth could bind LTs and may consequently modulate the course of infection or pathogenesis. In addition, the decreased production of LTs in immunocompromised individuals might modulate the pathophysiology of helminth and protozoan infections.
    [Show full text]
  • European Patent Office
    (19) *EP003643305A1* (11) EP 3 643 305 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.04.2020 Bulletin 2020/18 A61K 31/196 (2006.01) A61K 31/403 (2006.01) A61K 31/405 (2006.01) A61K 31/616 (2006.01) (2006.01) (21) Application number: 18202657.5 A61P 35/00 (22) Date of filing: 25.10.2018 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • LAEMMERMANN, Ingo GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 1170 Wien (AT) PL PT RO RS SE SI SK SM TR • GRILLARI, Johannes Designated Extension States: 2102 Bisamberg (AT) BA ME • PILS, Vera Designated Validation States: 1160 Wien (AT) KH MA MD TN • GRUBER, Florian 1050 Wien (AT) (71) Applicants: • NARZT, Marie-Sophie • Universität für Bodenkultur Wien 1140 Wien (AT) 1180 Wien (AT) • Medizinische Universität Wien (74) Representative: Loidl, Manuela Bettina et al 1090 Wien (AT) REDL Life Science Patent Attorneys Donau-City-Straße 11 1220 Wien (AT) (54) COMPOSITIONS FOR THE ELIMINATION OF SENESCENT CELLS (57) The invention relates to a composition compris- ing senescent cells. The invention further relates to an ing one or more inhibitors capable of inhibiting at least in vitro method of identifying senescent cells in a subject two of cyclooxygenase-1 (COX-1), cyclooxygenase-2 and to a method of identifying candidate compounds for (COX-2) and lipoxygenase for use in selectively eliminat- the selective elimination of senescent cells. EP 3 643 305 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 3 643 305 A1 2 Description al.
    [Show full text]
  • Regulation of Tissue Inflammation by 12-Lipoxygenases
    biomolecules Review Regulation of Tissue Inflammation by 12-Lipoxygenases Abhishek Kulkarni 1 , Jerry L. Nadler 2, Raghavendra G. Mirmira 1,* and Isabel Casimiro 1,* 1 Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; [email protected] 2 Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; [email protected] * Correspondence: [email protected] (R.G.M.); [email protected] (I.C.) Abstract: Lipoxygenases (LOXs) are lipid metabolizing enzymes that catalyze the di-oxygenation of polyunsaturated fatty acids to generate active eicosanoid products. 12-lipoxygenases (12-LOXs) primarily oxygenate the 12th carbon of its substrates. Many studies have demonstrated that 12-LOXs and their eicosanoid metabolite 12-hydroxyeicosatetraenoate (12-HETE), have significant pathological implications in inflammatory diseases. Increased level of 12-LOX activity promotes stress (both oxidative and endoplasmic reticulum)-mediated inflammation, leading to damage in these tissues. 12-LOXs are also associated with enhanced cellular migration of immune cells—a characteristic of several metabolic and autoimmune disorders. Genetic depletion or pharmacological inhibition of the enzyme in animal models of various diseases has shown to be protective against disease development and/or progression in animal models in the setting of diabetes, pulmonary, cardiovascular, and metabolic disease, suggesting a translational potential of targeting the enzyme for the treatment of several disorders. In this article, we review the role of 12-LOXs in the pathogenesis of several diseases in which chronic inflammation plays an underlying role. Citation: Kulkarni, A.; Nadler, J.L.; Keywords: 12-lipoxygenases; 12-LOXs; 12/15-lipoxygenase; 12/15-LOX; lipoxygenases; eicosanoids; Mirmira, R.G.; Casimiro, I.
    [Show full text]
  • Crystal Structure of Microsomal Prostaglandin E2 Synthase Provides Insight Into Diversity in the MAPEG Superfamily
    Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily Tove Sjögrena,1, Johan Nordb, Margareta Eka, Patrik Johanssona, Gang Liub, and Stefan Geschwindnera,1 aDiscovery Sciences, AstraZeneca R&D Mölndal, S-43183 Mölndal, Sweden; and bDepartment of Neuroscience, AstraZeneca R&D Södertälje, S-151 85 Södertälje, Sweden Edited by R. Michael Garavito, Michigan State University, East Lansing, MI, and accepted by the Editorial Board January 17, 2013 (received for review October 24, 2012) fl Prostaglandin E2 (PGE2) is a key mediator in in ammatory re- with mPGES-1. Leukotriene C4 (LTC4) synthase, 5-lipoxygenase sponse. The main source of inducible PGE2, microsomal PGE2 syn- activating protein (FLAP), MGST2, and MGST3 are more dis- thase-1 (mPGES-1), has emerged as an interesting drug target for tantly related with a sequence identity of 15–30%. Initial struc- treatment of pain. To support inhibitor design, we have deter- tural characterization of the MAPEG family was done using mined the crystal structure of human mPGES-1 to 1.2 Å resolution. electron crystallography and showed that the members contain The structure reveals three well-defined active site cavities within four transmembrane helices and are organized as trimers (8, 9). the membrane-spanning region in each monomer interface of This was later confirmed by the X-ray crystal structures of FLAP the trimeric structure. An important determinant of the active (10) and LTC4 synthase (11, 12). There are also low-resolution site cavity is a small cytosolic domain inserted between trans- 3D electron crystallography structures of MGST1 and mPGES-1 membrane helices I and II.
    [Show full text]