Regulation of Tissue Inflammation by 12-Lipoxygenases

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Tissue Inflammation by 12-Lipoxygenases biomolecules Review Regulation of Tissue Inflammation by 12-Lipoxygenases Abhishek Kulkarni 1 , Jerry L. Nadler 2, Raghavendra G. Mirmira 1,* and Isabel Casimiro 1,* 1 Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; [email protected] 2 Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA; [email protected] * Correspondence: [email protected] (R.G.M.); [email protected] (I.C.) Abstract: Lipoxygenases (LOXs) are lipid metabolizing enzymes that catalyze the di-oxygenation of polyunsaturated fatty acids to generate active eicosanoid products. 12-lipoxygenases (12-LOXs) primarily oxygenate the 12th carbon of its substrates. Many studies have demonstrated that 12-LOXs and their eicosanoid metabolite 12-hydroxyeicosatetraenoate (12-HETE), have significant pathological implications in inflammatory diseases. Increased level of 12-LOX activity promotes stress (both oxidative and endoplasmic reticulum)-mediated inflammation, leading to damage in these tissues. 12-LOXs are also associated with enhanced cellular migration of immune cells—a characteristic of several metabolic and autoimmune disorders. Genetic depletion or pharmacological inhibition of the enzyme in animal models of various diseases has shown to be protective against disease development and/or progression in animal models in the setting of diabetes, pulmonary, cardiovascular, and metabolic disease, suggesting a translational potential of targeting the enzyme for the treatment of several disorders. In this article, we review the role of 12-LOXs in the pathogenesis of several diseases in which chronic inflammation plays an underlying role. Citation: Kulkarni, A.; Nadler, J.L.; Keywords: 12-lipoxygenases; 12-LOXs; 12/15-lipoxygenase; 12/15-LOX; lipoxygenases; eicosanoids; Mirmira, R.G.; Casimiro, I. inflammation Regulation of Tissue Inflammation by 12-Lipoxygenases. Biomolecules 2021, 11, 717. https://doi.org/10.3390/ biom11050717 1. Introduction Inflammation is a conserved mechanism that serves as a defense against injurious Academic Editors: George Kokotos stimuli, including invasion of pathogens, tissue injury, and intracellular damage signals [1]. and Sasanka Ramanadham Cells release a variety of factors, including histamines, prostaglandins, and bradykinin. These signals promote an acute inflammatory response, including changes to vascular per- Received: 30 March 2021 meability, with localized infiltration and accumulation of immune cells from the circulation, Accepted: 7 May 2021 Published: 11 May 2021 accompanied by the release of inflammatory mediators such as cytokines, chemokines, and eicosanoids. This cascade of inflammation is followed by tissue remodeling and a repair process to restore tissue health. Usually, this inflammatory response is completed Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in upon the eradication of the pathogens or after tissue repair. However, if the process is not published maps and institutional affil- appropriately terminated or becomes uncontrolled, it can lead to a maladaptive chronic iations. inflammatory state that contributes to irreversible tissue damage resulting in disease pathol- ogy. Chronic inflammation is known to be an underlying cause of several diseases, such as metabolic syndrome, type 1 and type 2 diabetes (T1D and T2D), non-alcoholic fatty liver disease (NAFLD), hypertension, cardiovascular disease (CVD), chronic kidney disease, neurodegenerative, and autoimmune diseases [2]. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. 2. The Mammalian Lipoxygenases This article is an open access article distributed under the terms and Lipoxygenases (LOXs) collectively represent a family of enzymes that catalyze the conditions of the Creative Commons oxygenation of cellular polyunsaturated fatty acids (PUFAs) to form eicosanoid metabo- Attribution (CC BY) license (https:// lites that function in inflammatory pathways in an autocrine, paracrine, or endocrine creativecommons.org/licenses/by/ fashion [3,4]. The LOX enzymes catalyze the oxidative metabolism of multiple PUFA sub- 4.0/). strates, including arachidonic acid (AA), dihomo-γ-linoleic acid (DLA), linolenic acid (LA), Biomolecules 2021, 11, 717. https://doi.org/10.3390/biom11050717 https://www.mdpi.com/journal/biomolecules Biomolecules 2021, 11, x FOR PEER REVIEW 2 of 19 Biomolecules 2021, 11, 717 ion [3,4]. The LOX enzymes catalyze the oxidative metabolism of multiple PUFA sub-2 of 18 strates, including arachidonic acid (AA), dihomo-γ-linoleic acid (DLA), linolenic acid (LA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) to generate a multi- tudedocosahexaenoic of bioactive products acid (DHA), involved and eicosapentaenoicin pro- and anti-inflammatory acid (EPA) to ac generatetivities.a The multitude cellular of eventsbioactive that productsoccur during involved resolution in pro- of and inflammation anti-inflammatory employ activities. a conversion The cellularfrom pro events-in- flammatorythat occur duringmetabolites resolution to pro of-resolving inflammation mediators, employ such a conversion as lipoxins from and pro-inflammatory resolvins, to dampenmetabolites the immune to pro-resolving response (Figure mediators, 1) [5] such. Arachidonic as lipoxins acid and serves resolvins, as a major to dampen precursor the forimmune a variety response of eicosanoids (Figure 1with)[ 5 ].inflammatory Arachidonic properties acid serves including as a major the precursor product for 12- aHETE, variety whichof eicosanoids will be the with focus inflammatory of this review properties. including the product 12-HETE, which will be the focus of this review. Figure 1. Substrates and products of the 12-lipoxygenases. Figure 1. Substrates and products of the 12-lipoxygenases. LOXs are expressed in all cell types of hematopoietic origin, in particular, platelets and leukocytes.LOXs are Their expressed nomenclature in all cell is types based of on hematopoietic the location atorigin, which in they particular insert, the platelets oxygen andon leukocytes. their fatty acid Their substrate nomenclature [6,7]. 12-LOX is based catalyzes on the location the oxygenation at which they of the insert 12th t carbonhe oxy- of genarachidonic on their fatty acid acid to 12-hydroperoxyeicosatetraenoate substrate [6,7]. 12-LOX catalyzes the (12(S)-HPETE), oxygenation whichof the 1 subsequently2th carbon ofis arachidonic reduced by glutathioneacid to 12-hydroperoxyeicosatetraenoate peroxidase to a more stable analogous (12(S)-HPETE), hydroxy which compound subse- 12- quentlyhydroxyeicosatetraenoate is reduced by glutathione 12(S)-HETE, peroxidase or simply to a 12-HETEmore stable [8–10 analogous]. In mice, hydroxy there are com- seven poundfunctional 12-hydroxyeicosatetraenoate LOX genes (Alox5, Alox12, 12(S) Alox12b,-HETE Alox15,, or simply Alox8, 12- Aloxe3,HETE [8and–10].Aloxe12 In mice,), three there or arefour seven functional functional genes LOX in zebrafish genes ( (Alox5,alox5a, Alox12, alox5b, alox12Alox12b,, and Alox15, a possible Aloxalox158, Aloxe3,orthologue) and Aloxe12and six), functionalthree or four genes functional in humans genes (ALOX5, in zebrafish ALOX12, (alox5a, ALOX12B, alox5b, ALOX15, alox12, and ALOX15B, a possibleand alox15ALOXE3 orthologue)). Their expression and six functional patterns vary genes by in tissue humans distribution (ALOX5, and ALOX12, cell type. ALOX12B, ALOX15,The ALOX15B, genomic distribution and ALOXE3 of). the Their LOX expression genes shows patterns conservation vary by across tissue higherdistribution species. andAll cellAlox typgenese. in mice, except for Alox5, are located in the LOX cluster 1 and 2 of chromo- someThe 11 genomic [6]. Notably, distribution these lipoxygenase of the LOX genes clusters shows reside conservation near other chemokine across higher clusters, species. and Allthe Alox genetic genes proximity in mice, except is conserved for Alox in5 humans., are located Whereas in theALOX5 LOX clusteris located 1 and on 2 chromosomeof chromo- some10 in 11 humans, [6]. Notably the rest, these of the lipoxygenase LOX genes areclusters clustered reside in near chromosome other chemokine 17p13.1 nearclusters, other andgenes the genetic involved proximity in inflammation is conserved [11,12 in]. humans. Whereas ALOX5 is located on chromo- some 10 in humans, the rest of the LOX genes are clustered in chromosome 17p13.1 near other3. The genes 12/15-Lipoxygenase involved in inflammation Pathway [11,12]. 3.1. Functional Orthologs of 12-LOX Human LOX enzymes include 5-lipoxygenase (5-LOX), which result in the production of leukotrienes, as well as the 12-lipoxygenases and the 15-lipoxygenases. 12-lipoxygenase was the first identified mammalian lipoxygenase. It was discovered in human and bovine platelets in the mid-1970s [13–15]. Different isoforms of 12-lipoxygenase have been identi- fied and named after the cells in which they were found: platelet, leukocyte, and epidermal Biomolecules 2021, 11, 717 3 of 18 type. However, this convention can be problematic as it is not always precise. For instance, the “platelet type 12-LOX” can be found in both platelets and skin of humans and mice, but is not expressed in porcine platelets [15,16]. To add more complexity to the nomen- clature, there is significant species-specific variation in terms of the products formed by 12-LOX and 15-LOX. In this regard, the use of the appropriate nomenclature is imperative, as orthologs of the same gene may have different stereo-specificities
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • Eicosanoids in Carcinogenesis
    4open 2019, 2,9 © B.L.D.M. Brücher and I.S. Jamall, Published by EDP Sciences 2019 https://doi.org/10.1051/fopen/2018008 Special issue: Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” Available online at: Guest Editor: Obul R. Bandapalli www.4open-sciences.org REVIEW ARTICLE Eicosanoids in carcinogenesis Björn L.D.M. Brücher1,2,3,*, Ijaz S. Jamall1,2,4 1 Theodor-Billroth-Academy®, Germany, USA 2 INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Germany, USA 3 Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany 4 Risk-Based Decisions Inc., Sacramento, CA, USA Received 21 March 2018, Accepted 16 December 2018 Abstract- - Inflammation is the body’s reaction to pathogenic (biological or chemical) stimuli and covers a burgeoning list of compounds and pathways that act in concert to maintain the health of the organism. Eicosanoids and related fatty acid derivatives can be formed from arachidonic acid and other polyenoic fatty acids via the cyclooxygenase and lipoxygenase pathways generating a variety of pro- and anti-inflammatory mediators, such as prostaglandins, leukotrienes, lipoxins, resolvins and others. The cytochrome P450 pathway leads to the formation of hydroxy fatty acids, such as 20-hydroxyeicosatetraenoic acid, and epoxy eicosanoids. Free radical reactions induced by reactive oxygen and/or nitrogen free radical species lead to oxygenated lipids such as isoprostanes or isolevuglandins which also exhibit pro-inflammatory activities. Eicosanoids and their metabolites play fundamental endocrine, autocrine and paracrine roles in both physiological and pathological signaling in various diseases. These molecules induce various unsaturated fatty acid dependent signaling pathways that influence crosstalk, alter cell–cell interactions, and result in a wide spectrum of cellular dysfunctions including those of the tissue microenvironment.
    [Show full text]
  • Downloaded from GEO
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Oxylipin metabolism is controlled by mitochondrial b-oxidation during bacterial inflammation. Mariya Misheva1, Konstantinos Kotzamanis1*, Luke C Davies1*, Victoria J Tyrrell1, Patricia R S Rodrigues1, Gloria A Benavides2, Christine Hinz1, Robert C Murphy3, Paul Kennedy4, Philip R Taylor1,5, Marcela Rosas1, Simon A Jones1, Sumukh Deshpande1, Robert Andrews1, Magdalena A Czubala1, Mark Gurney1, Maceler Aldrovandi1, Sven W Meckelmann1, Peter Ghazal1, Victor Darley-Usmar2, Daniel White1, and Valerie B O’Donnell1 1Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, UK, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA, 4Cayman Chemical 1180 E Ellsworth Rd, Ann Arbor, MI 48108, United States, 5UK Dementia Research Institute at Cardiff, Cardiff University, UK Address correspondence: Valerie O’Donnell, [email protected] or Daniel White, [email protected], Systems Immunity Research Institute, Cardiff University *Both authors contributed equally to the study 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Integrated Multivariate Analysis of Transcriptomic Data Reveals Immunological Mechanisms in Mice After Leishmania Infantum Infec
    1 Integrated multivariate analysis of transcriptomic data 2 reveals immunological mechanisms in mice after 3 Leishmania infantum infection 4 5 Génesis Palacios1, Raquel Diaz-Solano1, Basilio Valladares1,2,4, Roberto Dorta- 6 Guerra1,3, Emma Carmelo1,2,4*. 7 1 Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, 8 Universidad de la Laguna, La Laguna, Islas Canarias, Spain.2 Departamento de 9 Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, 10 Toxicología, Medicina Legal y Forense y Parasitología. 3 Departamento de 11 Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, 12 Universidad de La Laguna, La Laguna, Spain. 4 Red de Investigación Colaborativa 13 en Enfermedades Tropicales (RICET). 14 15 16 17 18 19 20 21 1 22 SUPPLEMENTAL MATERIAL 23 Supplementary file 1. List of TaqMan assays used for RT-qPCR analysis using 24 QuantStudioTM 12K Flex Real-Time PCR System. 25 PANEL 1. N° Assay ID GEN NOMBRE DEL GEN GRUPO 1 Mm00437762_m1 B2m beta-2 microglobulin 2 Mm00446968_m1 Hprt hypoxanthine guanine phosphoribosyl transferase 3 Mm00435617_m1 Pgk1 phosphoglycerate kinase 1 Endogenous gene 4 Mm01277042_m1 Tbp TATA box binding protein expression 5 Mm01201237_m1 Ubc ubiquitin C tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 6 Mm01722325_m1 Ywhaz protein, zeta polypeptide 7 Mm00599890_m1 Ifngr1 interferon gamma receptor 1 8 Mm00492626_m1 Ifngr2 interferon gamma receptor 2 9 Mm01168134_m1 Ifng interferon gamma 10 Mm01178820_m1 Tgfb1 transforming growth factor,
    [Show full text]
  • Open Thesis Master Document V5.0.Pdf
    The Pennsylvania State University The Graduate School Department of Veterinary and Biomedical Science IDENTIFICATION OF ENDOGENOUS MODULATORS FOR THE ARYL HYDROCARBON RECEPTOR A Thesis in Genetics by Christopher R. Chiaro © 2007 Christopher R. Chiaro Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December, 2007 The thesis of Christopher R. Chiaro was reviewed and approved* by the following: Gary H. Perdew John T. and Paige S. Smith Professor in Agricultural Sciences Thesis Advisor Chair of Committee C. Channa Reddy Distinguished Professor of Veterinary Science A. Daniel Jones Senior Scientist Department of Chemistry John P. Vanden Heuvel Professor of Veterinary Science Richard Ordway Associate Professor of Biology Chair of Genetics Graduate Program *Signatures are on file in the Graduate School iii ABSTRACT The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor capable of being regulated by a structurally diverse array of chemicals ranging from environmental carcinogens to dietary metabolites. A member of the basic helix-loop- helix/ Per-Arnt-Sim (bHLH-PAS) super-family of DNA binding regulatory proteins, the AhR is an important developmental regulator that can be detected in nearly all mammalian tissues. Prior to ligand activation, the AhR resides in the cytosol as part of an inactive oligomeric protein complex comprised of the AhR ligand-binding subunit, a dimer of the 90 kDa heat shock protein, and a single molecule each of the immunophilin like X-associated protein 2 (XAP2) and p23 proteins. Functioning as chemosensor, the AhR responds to both endobiotic and xenobiotic derived chemical ligands by ultimately directing the expression of metabolically important target genes.
    [Show full text]
  • BPS Complete Catalog
    BPSCATALOG ENZYMES KITS CELL LINES SCREENING SERVICES INNOVATIVE PRODUCTS TO FUEL YOUR EXPERIMENTS Unique, expert portfolio 2017 OUR MISSION: To provide the highest quality life science products and services worldwide in a timely manner to assist in accelerating drug discovery research and development for the treatment of human diseases. INNOVATION WE CONTINUOUSLY STRIVE TO BE FIRST TO MARKET BY PROVIDING EXPERTISE IN EXPRESSING HIGHLY ACTIVE ENZYMES MULTIPLE ASSAY DETECTION FORMATS HUMAN, MURINE AND MONKEY VERSIONS OF RECOMBINANT PROTEINS BIOTINYLATED VERSIONS OF MANY IMMUNE CHECKPOINT RECEPTORS 1ST AND MOST EXTENSIVE PARP ISOZYME PORTFOLIO 1ST AND MOST EXTENSIVE PDE ISOZYME PORTFOLIO 1ST COMPLETE SUITE OF HDAC AND SIRT ENZYMES 1ST AVAILABLE PARP AND TANKYRASE PROFILING SERVICES 1ST COMMERCIALLY AVAILABLE HISTONE DEMETHYLASES LARGEST OFFERING OF METHYLTRANSFERASES LARGEST OFFERING OF DEMETHYLASES OVER 200 PRODUCTS AND SERVICES EXCLUSIVE TO BPS RELIABILITY BPS IS CITED IN PEER-REVIEWED JOURNALS AND PUBLICATIONS AROUND THE WORLD NATURE GENETICS THE JOURNAL OF BIOLOGICAL CHEMISTRY JOURNAL OF CELL SCIENCE ANALYTICAL BIOCHEMISTRY BBRC NATURE CHEMICAL BIOLOGY ACS MEDICINAL CHEMISTRY LETTERS JOURNAL OF NATURAL PRODUCTS CHEMMEDCHEM MOLECULAR CANCER THERAPEUTICS & MANY MORE TABLE OF CONTENTS ACETYLTRANSFERASE 4 APOPTOSIS 4-5 ANTIBODIES 6-9 BIOTINYLATION 10-11 BROMODOMAINS 12-14 CELL BASED ASSAY KITS 15 CELL LINES 16-17 CELL SURFACE RECEPTORS 18-20 CYTOKINE(S) 21-24 DEACETYLASE(S) 25-27 DEMETHYLASE(S) 28-29 HEAT SHOCK PROTEINS 30 IMMUNOTHERAPY
    [Show full text]
  • Meta-Analysis of Mutations in ALOX12B Or ALOXE3 Identified in a Large Cohort of 224 Patients
    University of Groningen Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients Hotz, Alrun; Kopp, Julia; Bourrat, Emmanuelle; Oji, Vinzenz; Komlosi, Katalin; Giehl, Kathrin; Bouadjar, Bakar; Bygum, Anette; Tantcheva-Poor, Iliana; Hellstrom Pigg, Maritta Published in: Genes DOI: 10.3390/genes12010080 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2021 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hotz, A., Kopp, J., Bourrat, E., Oji, V., Komlosi, K., Giehl, K., Bouadjar, B., Bygum, A., Tantcheva-Poor, I., Hellstrom Pigg, M., Has, C., Yang, Z., Irvine, A. D., Betz, R. C., Zambruno, G., Tadini, G., Suessmuth, K., Gruber, R., Schmuth, M., ... Fischer, J. (2021). Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients. Genes, 12(1), [80]. https://doi.org/10.3390/genes12010080 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • Homozygous ALOXE3 Nonsense Variant Identified in a Patient With
    Int. J. Mol. Sci. 2015, 16, 21791-21801; doi:10.3390/ijms160921791 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Homozygous ALOXE3 Nonsense Variant Identified in a Patient with Non-Bullous Congenital Ichthyosiform Erythroderma Complicated by Superimposed Bullous Majocchi’s Granuloma: The Consequences of Skin Barrier Dysfunction Tao Wang 1, Chenchen Xu 1, Xiping Zhou 1, Chunjia Li 2, Hongbing Zhang 2, Bill Q. Lian 3, Jonathan J. Lee 4, Jun Shen 4, Yuehua Liu 1,* and Christine Guo Lian 4,* 1 Department of Dermatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; E-Mails: [email protected] (T.W.); [email protected] (C.X.); [email protected] (X.Z.) 2 State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; E-Mails: [email protected] (C.L.); [email protected] (H.Z.) 3 Department of Medicine, University of Massachusetts, Worcester, MA 01655, USA; E-Mail: [email protected] 4 Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA; E-Mails: [email protected] (J.J.L.); [email protected] (J.S.) † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Y.L.); [email protected] (C.G.L.); Tel./Fax: +86-10-6916-1502 (Y.L.).
    [Show full text]
  • A Mouse Mutation in the 12R-Lipoxygenase, Alox12b, Disrupts Formation of the Epidermal Permeability Barrier Jennifer L
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector ORIGINAL ARTICLE A Mouse Mutation in the 12R-Lipoxygenase, Alox12b, Disrupts Formation of the Epidermal Permeability Barrier Jennifer L. Moran1, Haiyan Qiu1, Annick Turbe-Doan1, Yujuan Yun1, William E. Boeglin2, Alan R. Brash2 and David R. Beier1 Nonbullous congenital ichthyosiform erythroderma (NCIE) is a nonsyndromic form of autosomal recessive congenital ichthyosis characterized by hyperkeratosis and a disruption in the epidermal permeability barrier. Identification of mutations in two lipoxygenases (LOXs), ALOX12B (12R-LOX) and ALOXE3 (eLOX3), and further functional studies implicate ALOX12B and ALOXE3 in the etiology of NCIE. Here, we report a mutation in Alox12b in the recessive ethylnitrosurea-induced mouse mutant, mummy (Alox12bmmy-Bei). mummy mutants have red, scaly skin and die perinatally. Histologically, mummy mutants display defects in the epidermis. We mapped mummy to a 1.9 Mb interval on Chr. 11 containing Alox12b (12R-LOX), Aloxe3 (eLOX3) and Alox15b (8-LOX). Sequencing of all three genes identified a nonsense mutation in the catalytic domain of Alox12b.We demonstrate that mummy mutants have a disrupted epidermal permeability barrier and that the nonsense mutation in mummy abolishes the enzyme activity of 12R-LOX. The mummy mutant provides a mouse model for LOX-mediated NCIE and is the first described mouse mutant affecting epidermal barrier formation identified by forward genetics. Journal of Investigative Dermatology (2007) 127, 1893–1897; doi:10.1038/sj.jid.5700825; published online 12 April 2007 INTRODUCTION of two types: lamellar ichthyosis (LI) and nonbullous The epidermal permeability barrier is a specialized epidermal congenital ichthyosiform erythroderma (NCIE, CIE, or NBCIE) structure that protects the skin from dehydration and the entry (reviewed in Akiyama et al., 2003).
    [Show full text]
  • Table S2.Up Or Down Regulated Genes in Tcof1 Knockdown Neuroblastoma N1E-115 Cells Involved in Differentbiological Process Anal
    Table S2.Up or down regulated genes in Tcof1 knockdown neuroblastoma N1E-115 cells involved in differentbiological process analysed by DAVID database Pop Pop Fold Term PValue Genes Bonferroni Benjamini FDR Hits Total Enrichment GO:0044257~cellular protein catabolic 2.77E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 537 13588 1.944851 8.64E-07 8.64E-07 5.02E-07 process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0051603~proteolysis involved in 4.52E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 534 13588 1.93519 1.41E-06 7.04E-07 8.18E-07 cellular protein catabolic process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0044265~cellular macromolecule 6.09E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 609 13588 1.859332 1.90E-06 6.32E-07 1.10E-06 catabolic process ISG15, RBM8A, ATG7, LOC100046898, PSENEN, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, XRN2, USP17L5, FBXO11, RAD23B, UBE2V2, NED GO:0030163~protein catabolic process 1.81E-09 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 556 13588 1.87839 5.64E-06 1.41E-06 3.27E-06 ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4,
    [Show full text]
  • Essential Role of the Cytochrome P450 CYP4F22 in the Production of Acylceramide, the Key Lipid for Skin Permeability Barrier Formation
    Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation Yusuke Ohnoa, Shota Nakamichia, Aya Ohkunia, Nozomi Kamiyamaa, Ayano Naoeb, Hisashi Tsujimurab, Urara Yokoseb, Kazumitsu Sugiurac, Junko Ishikawab, Masashi Akiyamac, and Akio Kiharaa,1 aLaboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan; bKao Corporation, Haga-gun, Tochigi 321-3497, Japan; and cDepartment of Dermatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan Edited by David W. Russell, University of Texas Southwestern Medical Center, Dallas, TX, and approved May 21, 2015 (received for review February 19, 2015) A skin permeability barrier is essential for terrestrial animals, and its lamellae and/or to stabilize the multiple lipid layers. Linoleic impairment causes several cutaneous disorders such as ichthyosis and acid is one of the essential FAs, and its deficiency causes ich- atopic dermatitis. Although acylceramide is an important lipid for the thyosis symptoms resulting from a failure to form normal acyl- skin permeability barrier, details of its production have yet to be de- ceramide (8). Ichthyosis is a cutaneous disorder accompanied termined, leaving the molecular mechanism of skin permeability bar- by dry, thickened, and scaly skin; it is caused by a barrier ab- rier formation unclear. Here we identified the cytochrome P450 gene normality. In patients who have atopic dermatitis, both total CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as ceramide levels and the chain length of ceramides are de- the long-sought fatty acid ω-hydroxylase gene required for acylcer- creased, and ceramide composition is altered also (9–11).
    [Show full text]
  • Identification of a Novel Enzyme from E. Pacifica That Acts As an Eicosapentaenoic 8R-LOX and Docosahexaenoic 10R-LOX
    www.nature.com/scientificreports OPEN Identifcation of a novel enzyme from E. pacifca that acts as an eicosapentaenoic 8R‑LOX and docosahexaenoic 10R‑LOX Sayaka Yuki1,5, Aiko Uemura1, Mayuka Hakozaki1, Akira Yano1, Masato Abe2, Yoshihisa Misawa3, Naomichi Baba3 & Hidetoshi Yamada1,4,5* North Pacifc krill (Euphausia pacifca) contain 8R‑hydroxy‑eicosapentaenoic acid (8R‑HEPE), 8R‑hydroxy‑eicosatetraenoic acid (8R‑HETE) and 10R‑hydroxy‑docosahexaenoic acid (10R‑HDHA). These fndings indicate that E. pacifca must possess an R type lipoxygenase, although no such enzyme has been identifed in krill. We analyzed E. pacifca cDNA sequence using next generation sequencing and identifed two lipoxygenase genes (PK-LOX1 and 2). PK-LOX1 and PK-LOX2 encode proteins of 691 and 686 amino acids, respectively. Recombinant PK‑LOX1 was generated in Sf9 cells using a baculovirus expression system. PK‑LOX1 metabolizes eicosapentaenoic acid (EPA) to 8R‑HEPE, arachidonic acid (ARA) to 8R‑HETE and docosahexaenoic acid (DHA) to 10R‑HDHA. Moreover, PK‑LOX1 had higher activity for EPA than ARA and DHA. In addition, PK‑LOX1 also metabolizes 17S‑HDHA to 10R,17S‑dihydroxy‑docosahexaenoic acid (10R,17S‑DiHDHA). PK‑LOX1 is a novel lipoxygenase that acts as an 8R‑lipoxygenase for EPA and 10R‑lipoxygenase for DHA and 17S‑HDHA. Our fndings show PK‑LOX1 facilitates the enzymatic production of hydroxy fatty acids, which are of value to the healthcare sector. Abbreviations LOX Lipoxygenase EPA Eicosapentaenoic acid DHA Docosahexaenoic acid ARA​ Arachidonic acid HEPE Hydroxy-eicosapentaenoic acid HDHA Hydroxy-docosahexaenoic acid HETE Hydroxy-eicosatetraenoic acid MeOH Methanol PUFA Polyunsaturated fatty acid LC/QTOFMS Liquid chromatography/hybrid quadrupole time-of-fight mass spectrometry Lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that catalyze the dioxygenation of polyun- saturated fatty acids (PUFAs)1–4.
    [Show full text]