European Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

European Patent Office (19) *EP003643305A1* (11) EP 3 643 305 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.04.2020 Bulletin 2020/18 A61K 31/196 (2006.01) A61K 31/403 (2006.01) A61K 31/405 (2006.01) A61K 31/616 (2006.01) (2006.01) (21) Application number: 18202657.5 A61P 35/00 (22) Date of filing: 25.10.2018 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • LAEMMERMANN, Ingo GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 1170 Wien (AT) PL PT RO RS SE SI SK SM TR • GRILLARI, Johannes Designated Extension States: 2102 Bisamberg (AT) BA ME • PILS, Vera Designated Validation States: 1160 Wien (AT) KH MA MD TN • GRUBER, Florian 1050 Wien (AT) (71) Applicants: • NARZT, Marie-Sophie • Universität für Bodenkultur Wien 1140 Wien (AT) 1180 Wien (AT) • Medizinische Universität Wien (74) Representative: Loidl, Manuela Bettina et al 1090 Wien (AT) REDL Life Science Patent Attorneys Donau-City-Straße 11 1220 Wien (AT) (54) COMPOSITIONS FOR THE ELIMINATION OF SENESCENT CELLS (57) The invention relates to a composition compris- ing senescent cells. The invention further relates to an ing one or more inhibitors capable of inhibiting at least in vitro method of identifying senescent cells in a subject two of cyclooxygenase-1 (COX-1), cyclooxygenase-2 and to a method of identifying candidate compounds for (COX-2) and lipoxygenase for use in selectively eliminat- the selective elimination of senescent cells. EP 3 643 305 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 3 643 305 A1 2 Description al. 2018; Lewis et al. 2011; Ressler et al. 2006; Yosef et al. 2016), neurodegenerative diseases (Bussian et al. FIELD OF THE INVENTION 2018) and impaired adipogenesis (Xu et al. 2015). Fur- thermore, it was shown that clearance of senescent cells [0001] The present invention relates to the field of se- 5 attenuates the negative effects of irradiation- and chem- nolytics and provides a composition useful for the selec- otherapy-induced senescence and restores tissue func- tive elimination of senescent cells and a method of tionality (Baar et al. 2017; Chang et al. 2016; Dörr et al. screening for senolytic compounds. 2013; Pan et al. 2017). In addition to age-related diseases and disorders, cellular senescence is also associated BACKGROUND OF THE INVENTION 10 with tumor relapse following chemotherapy (Milanovic et al. 2017) and the performance of transplant organs [0002] Senescent cells were found to accumulate in (Braun et al. 2012) highlighting the potential of senolytic tissues and organs during the aging process at close therapies. proximity of age-related pathologies where they play a [0005] The list of senolytic compounds and targets critical role in the development and progression of age- 15 comprises inhibitors of the Bcl-2 family (Chang et al. related diseases and disorders. Clearance of senescent 2016; Pan et al. 2017; Yosef et al. 2016; Zhu et al. 2017; cells in mouse models using either genetic or pharma- Zhu et al. 2016), Hsp90 inhibitors (Fuhrmann-Stroissnigg cological approaches was shown to extend the health et al. 2017), dasatinib (Roos et al. 2016; Schafer et al. span, to prevent or delay the occurrence of senescence- 2017; Zhu et al. 2015), FOXO4 (Baar et al. 2017), OXR1 associated diseases and disorders and the development 20 (Zhang et al. 2018), glucose metabolism (Dörr et al. of frailty. Since then several pharmacological com- 2013), mitochondria-targeted tamoxifen (MitoTam) or re- pounds have been identified which were able to selec- duction of ATP synthase activity with oligomycin A (Hu- tively eliminate senescent cells and are generally re- backova et al. 2018) and several plant derived com- ferred to as "senolytics". pounds, such as quercetin (Roos et al. 2016; Schafer et [0003] Although cellular senescence is a tumor sup- 25 al. 2017; Zhu et al. 2015), fisetin (Zhu et al. 2017), pip- pressive mechanism which plays an important role in em- erlongumine (Wang et al. 2016a) and an alcoholic extract bryonic development (Muñoz-Espín et al. 2013) and of solidago virgaurea (Lämmermann et al. 2018). wound healing (Demaria et al. 2014), the chronic accu- [0006] However, many of the reported senolytics like mulation of senescent cells in organs and tissue during navitoclax and dasatinib have serious side effects and the aging process is believed to be a major driving force 30 most senolytics are not universally effective in all cell for the development and progression of age-related dis- types. Therefore, there is a strong need in the field for eases and disorders. Senescent cells are terminally improved senolytics with less severe side effects and growth arrested either via the p53-p21CIP1 or via the broad range of applications. p16INK4a-Rb axis, accumulate senescence-associated β-galactosidase activity (SA-β-gal) and display a typical 35 SUMMARY OF THE INVENTION morphology (Campisi and d’Adda di Fagagna 2007). When chronically present, they negatively affect the sur- [0007] It is the objective of the present invention, to rounding tissue by secreting a pro-tumorigenic and pro- provide a composition capable of efficiently eliminating inflammatory mixture of cytokines, growth factors and senescent cells. It is a further objective of the present proteases (Acosta et al. 2013; Coppé et al. 2010; Krtolica 40 invention to provide a method to screen for compounds et al. 2001) termed the senescence-associated secretory useful for the selective elimination of senescent cells. phenotype (SASP). [0008] The problem is solved by the present invention. [0004] Genetic mouse models using the p16INK4a pro- [0009] The inventors have shown that senescent cells moter to visualize and selectively eliminate p16INK4a pos- comprise an altered lipid metabolism, which can be ex- itive cells convincingly demonstrated that senescent cells 45 ploited to selectively eliminate senescent cells. In partic- accumulate during the aging process in vivo and that the ular, lyso PC is upregulated in senescent cells, indicating clearance of p16INK4a positive cells increases the health an increased formation of arachidonic acid. Arachidonic span and impairs the development and progression of acid is metabolized to eicosanoids by lipoxygenases and senescence-associated diseases and disorders (Baker cyclooxygenases, thereby preventing cell death due to et al. 2016; Baker et al. 2011). There is compelling evi- 50 high intracellular levels of arachidonic acid. Accordingly, dence for a causal relationship between senescent cells inhibition of lipoxygenases or cyclooxygenases leads to and several age-related diseases and disorders, such as an increase in arachidonic acid in senescent cells and, atherosclerosis (Childs et al. 2016; Roos et al. 2016), thus, to selective elimination of senescent cells. idiopathic pulmonary fibrosis (Lehmann et al. 2017; [0010] According to the invention there is provided a Schafer et al. 2017), osteoporosis (Farr et al. 2017; Zhu 55 composition comprising one or more inhibitors capable et al. 2015), post-traumatic osteoarthritis (Jeon et al. of inhibiting at least two of cyclooxygenase-1 (COX-1), 2017), renal aging (Schmitt and Melk 2017; Valentijn et cyclooxygenase-2 (COX-2) and lipoxygenase, for use in al. 2018), skin aging (Baar et al. 2017; Lämmermann et selectively eliminating senescent cells. 2 3 EP 3 643 305 A1 4 [0011] Specifically, the one or more inhibitors are spe- fluriprofen methyl ester, metamizole, nitroaspirin, melox- cific inhibitors of COX-1 and/or COX-2. icam, flufenamic acid, oxaprozin, tiaprofenic acid, mag- [0012] Specifically, the composition provided herein nesium salicylate, diethylcarbamazine, lornoxicam, car- comprises one or more inhibitors and is capable of inhib- profen, phenylbutazone, nepafenac, antipyrine, antrafe- iting the enzymatic activity of at least two enzymes se- 5 nine, choline magnesium trisalicylate, triflusal, niflumic lected from the group consisting of COX-1, COX-2 and acid, dexibuprofen, aceclofenac, acemetacin, droxicam, lipoxygenase. loxoprofen, tolfenamic acid, dexketoprofen, talniflumate, [0013] According to a specific embodiment, the com- propacetamol, trolamine salicylate, phenyl salicylate, position provided herein comprises at least two inhibitors. bufexamac, glycol salicylate, menthyl salicylate, FK-506, Specifically, the composition provided herein comprises 10 lenalidomide, rofecoxib, valdecoxib, cimicoxib, chlorphe- at least one COX-1 or COX-2 inhibitor and at least one nesin, clodronic acid, seliciclib, drospirenone, triamci- lipoxygenase inhibitor. Specifically, the composition nolone, pomalidomide, parecoxib, firocoxib, aclofenac, comprises at least one COX-1 inhibitor and at least one adapalene, thalidomide, etoricoxib, robenacoxib, asaral- COX-2 inhibitor. Specifically, the composition provided dehyde, zaltoprofen, deracoxib, dexamethasone, pran- comprises a cyclooxygenase inhibitor, selected from the 15 oprofen, amfenac sodium monohydrate, ampiroxicam, group consisting of COX-1 inhibitor, COX-2 inhibitor and NS-398, bismuth subsalicylate, diclofenac diethylamine, COX-1/COX-2 inhibitor, and a lipoxygenase inhibitor. trometamol, rutaecarpine, salicin, fenbufen, xanthohu- Specifically, the composition provided herein comprises mol, flunixin meglumin and nimesulide. at least one COX-1 inhibitor and at least one lipoxygen- [0019] Specifically, one or more inhibitors comprised ase inhibitor, or at least one COX-2 inhibitor and at least 20 in the composition provided herein are lipoxygenase one lipoxygenase inhibitor, or at least one COX-1/COX-
Recommended publications
  • Anti-Inflammatory Effects of Resveratrol and Related Polyphenols Contribute to Their Potential Beneficial Effects in Aging
    Tavener SK, et al., J Food Sci Nutr 2020, 6: 079 DOI: 10.24966/FSN-1076/100079 HSOA Journal of Food Science and Nutrition Review Article Abbreviations Anti-Inflammatory Effects BDNF: Brain-derived neurotrophic factor C5: Complement 5 of Resveratrol and Related CCL2: Chemokine (C-C motif) ligand 2 (aka MCP-1) Polyphenols Contribute to their CD: Cluster of differentiation COX-2: Cyclooxygenase-2 Potential Beneficial Effects in CRP: C-reactive protein CXCL10: C-X-C motif chemokine 10 Aging FOXO: Forkhead transcription factor GM-CSF: Granulocyte-macrophage colony-stimulating factor Selena K Tavener and Kiran S Panickar* HSP70: Heat shock protein 70 Science & Technology Center, Hill’s Pet Nutrition Center, Topeka, Kansas, ICAM-1: Intercellular adhesion molecule 1 USA IFN-γ: Interferon-gamma iNOS: Inducible nitric oxide synthase IL-6: Interleukin-6 Abstract JAK/STAT: Janus kinase/Signal transducer and activator of Resveratrol is a polyphenol found in grapes, blueberries, mulberry transcription and raspberry. Due to its antioxidant, anti-inflammatory, anti-microbial JNK: c-Jun N-terminal kinase and anti-proliferative properties resveratrol has been reported to LPS: Lipopolysaccharide have health benefits in aging and age-related health disorders. While MAPK: Mitogen-activated protein kinase the actions of resveratrol and related polyphenols are likely multi- MCP-1: Monocyte chemoattractant protein -1 factorial, the anti-inflammatory of polyphenols are reasonably well documented. Most studies demonstrating efficacy with resveratrol MIP-α: Macrophage inflammatory protein-1 alpha have been conducted in animal models or in vitro models. In human miR: microRNA trials some promising effects of resveratrol have been reported for NAD: Nicotinamide adenine dinucleotide several health conditions including cancer, dementia, inflammatory NFκB: Nuclear factor kappa B bowel syndrome, arthritis, ulcer and dermatological disorders.
    [Show full text]
  • Lack of Influence of Substrate on Ligand Interaction with the Human Multidrug
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 23, 2021 page 1 nd Interaction with the Human Multidrug Multidrug Human the with nd Interaction This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version.
    [Show full text]
  • Supplementary Information
    Supplementary Information Network-based Drug Repurposing for Novel Coronavirus 2019-nCoV Yadi Zhou1,#, Yuan Hou1,#, Jiayu Shen1, Yin Huang1, William Martin1, Feixiong Cheng1-3,* 1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA 3Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA #Equal contribution *Correspondence to: Feixiong Cheng, PhD Lerner Research Institute Cleveland Clinic Tel: +1-216-444-7654; Fax: +1-216-636-0009 Email: [email protected] Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. Supplementary Table S2. Protein sequence identities across 5 protein regions in 15 coronaviruses. Supplementary Table S3. HCoV-associated host proteins with references. Supplementary Table S4. Repurposable drugs predicted by network-based approaches. Supplementary Table S5. Network proximity results for 2,938 drugs against pan-human coronavirus (CoV) and individual CoVs. Supplementary Table S6. Network-predicted drug combinations for all the drug pairs from the top 16 high-confidence repurposable drugs. 1 Supplementary Table S1. Genome information of 15 coronaviruses used for phylogenetic analyses. GenBank ID Coronavirus Identity % Host Location discovered MN908947 2019-nCoV[Wuhan-Hu-1] 100 Human China MN938384 2019-nCoV[HKU-SZ-002a] 99.99 Human China MN975262
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Partial Agreement in the Social and Public Health Field
    COUNCIL OF EUROPE COMMITTEE OF MINISTERS (PARTIAL AGREEMENT IN THE SOCIAL AND PUBLIC HEALTH FIELD) RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies, and superseding Resolution AP (82) 2) AND APPENDIX I Alphabetical list of medicines adopted by the Public Health Committee (Partial Agreement) updated to 1 July 1988 APPENDIX II Pharmaco-therapeutic classification of medicines appearing in the alphabetical list in Appendix I updated to 1 July 1988 RESOLUTION AP (88) 2 ON THE CLASSIFICATION OF MEDICINES WHICH ARE OBTAINABLE ONLY ON MEDICAL PRESCRIPTION (superseding Resolution AP (82) 2) (Adopted by the Committee of Ministers on 22 September 1988 at the 419th meeting of the Ministers' Deputies) The Representatives on the Committee of Ministers of Belgium, France, the Federal Republic of Germany, Italy, Luxembourg, the Netherlands and the United Kingdom of Great Britain and Northern Ireland, these states being parties to the Partial Agreement in the social and public health field, and the Representatives of Austria, Denmark, Ireland, Spain and Switzerland, states which have participated in the public health activities carried out within the above-mentioned Partial Agreement since 1 October 1974, 2 April 1968, 23 September 1969, 21 April 1988 and 5 May 1964, respectively, Considering that the aim of the Council of Europe is to achieve greater unity between its members and that this
    [Show full text]
  • Put Microrna Drug Discovery
    Research Collection Doctoral Thesis Gene circuit based screening assays for mirna drug discovery Author(s): Häfliger, Benjamin Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010651992 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23325 GENE CIRCUIT BASED SCREENING ASSAYS FOR MIRNA DRUG DISCOVERY A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by BENJAMIN HÄFLIGER MSc ETH Biotech, ETH Zurich born on 25.02.1988 citizen of Fischbach, LU accepted on the recommendation of Prof. Dr. Yaakov Benenson Prof. Dr. Sven Panke Dr. Helge Grosshans 2016 ii Abstract Drug discovery is the process of identifying potential new medicines. A key step in this process is high throughput screening (HTS), whereby active compounds are identified from a large library of up to one million candidate molecules. Through minia- turization and automation, such libraries can nowadays be tested in a single week. Despite this impressive performance, about 50% of the screening campaigns fail to provide the desired hits, or the emerging lead compounds do not perform as expected in clinical settings, mostly due to toxicity from off-target interactions. To overcome this issue, novel HTS assays should provide more detailed information on the underlying biology and the relevant off-targets. Multiplexed assays based on liquid chromatog- raphy-mass spectroscopy or deep sequencing could deliver this information; yet, their throughput is comparably low.
    [Show full text]
  • Evaluation of the Allometric Exponents in Prediction of Human Drug Clearance
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2014 Evaluation of the Allometric Exponents in Prediction of Human Drug Clearance Da Zhang Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Other Pharmacy and Pharmaceutical Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3533 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ©Da Zhang, 2014 All Rights Reserve EVALUATION OF THE ALLOMETRIC EXPONENTS IN PREDICTION OF HUMAN DRUG CLEARANCE A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University By Da Zhang Master of Science, University of Arizona, 2004 Director: F. Douglas Boudinot, Ph.D. Professor, School of Pharmacy, VCU Virginia Commonwealth University Richmond, Virginia August, 2014 ACKNOWLEDGEMENTS First and foremost, I would like to sincerely thank my advisor, Dr. F. Douglas Boudinot, for giving me the opportunity to pursue graduate studies under his guidance and for his continuous professional support, guidance, encouragement and patience throughout my graduate program. He was always delighted in sharing his vast knowledge and kind warmth. I would also like to thank Dr. Ahmad for his scientific advice and support through the complet ion of my degree. He has been a kind and helpful mentor for me. I would like to acknowledge my graduate committee members, Drs.
    [Show full text]
  • Bioconversion of Stilbenes in Genetically Engineered Root and Cell
    www.nature.com/scientificreports OPEN Bioconversion of stilbenes in genetically engineered root and cell cultures of tobacco Received: 04 November 2016 Diego Hidalgo1, Ascensión Martínez-Márquez2, Elisabeth Moyano3, Roque Bru-Martínez2, Accepted: 20 February 2017 Purificación Corchete4 & Javier Palazon1 Published: 27 March 2017 It is currently possible to transfer a biosynthetic pathway from a plant to another organism. This system has been exploited to transfer the metabolic richness of certain plant species to other plants or even to more simple metabolic organisms such as yeast or bacteria for the production of high added value plant compounds. Another application is to bioconvert substrates into scarcer or biologically more interesting compounds, such as piceatannol and pterostilbene. These two resveratrol-derived stilbenes, which have very promising pharmacological activities, are found in plants only in small amounts. By transferring the human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) gene to tobacco hairy roots and cell cultures, we developed a system able to bioconvert exogenous t-resveratrol into piceatannol in quantities near to mg L−1. Similarly, after heterologous expression of resveratrol O-methyltransferase from Vitis vinifera (VvROMT) in tobacco hairy roots, the exogenous t-resveratrol was bioconverted into pterostilbene. We also observed that both bioconversions can take place in tobacco wild type hairy roots (pRiA4, without any transgene), showing that unspecific tobacco P450 hydroxylases and methyltransferases can perform the bioconversion of t-resveratrol to give the target compounds, albeit at a lower rate than transgenic roots. Trans-resveratrol (t-R) (3,4′ ,5-trihydroxystilbene) is a phytoalexin available from a wide range of dietary sources, including mulberries, peanuts, grapes and wine.
    [Show full text]