State of the Art Small Spacecraft Technology 2014

Total Page:16

File Type:pdf, Size:1020Kb

State of the Art Small Spacecraft Technology 2014 NASA/TP–2014–216648/REV1 Small Spacecraft Technology State of the Art Mission Design Division Staff Ames Research Center, Moffett Field, California July 2014 NASA STI Program . in Profile Since its founding, NASA has been CONFERENCE PUBLICATION. dedicated to the advancement of • Collected papers from scientific and aeronautics and space science. The technical conferences, symposia, NASA scientific and technical seminars, or other meetings information (STI) program plays a key sponsored or co-sponsored by part in helping NASA maintain this NASA. important role. SPECIAL PUBLICATION. Scientific, • The NASA STI Program operates technical, or historical information under the auspices of the Agency from NASA programs, projects, and Chief Information Officer. It collects, missions, often concerned with organizes, provides for archiving, and subjects having substantial public disseminates NASA’s STI. The NASA interest. STI Program provides access to the TECHNICAL TRANSLATION. NASA Aeronautics and Space • Database and its public interface, the English- language translations of NASA Technical Report Server, thus foreign scientific and technical providing one of the largest collection material pertinent to NASA’s of aeronautical and space science STI mission. in the world. Results are published in Specialized services also include both non-NASA channels and by creating custom thesauri, building NASA in the NASA STI Report Series, customized databases, and organizing which includes the following report and publishing research results. types: For more information about the NASA TECHNICAL PUBLICATION. STI Program, see the following: • Reports of completed research or a major significant phase of research Access the NASA STI program that present the results of NASA • programs and include extensive data home page at or theoretical analysis. Includes http://www.sti.nasa.gov compilations of significant scientific E-mail your question via the Internet and technical data and information • deemed to be of continuing to [email protected] reference value. NASA counterpart Fax your question to the NASA STI of peer-reviewed formal professional • papers, but having less stringent Help Desk at 443-757-5803 limitations on manuscript length and Phone the NASA STI Help Desk at extent of graphic presentations. • 443-757-5802 TECHNICAL MEMORANDUM. • Write to: Scientific and technical findings that • are preliminary or of specialized NASA STI Help Desk interest, e.g., quick release reports, NASA Center for AeroSpace working papers, and bibliographies Information that contain minimal annotation. 7115 Standard Drive Does not contain extensive analysis. Hanover, MD 21076–1320 CONTRACTOR REPORT. Scientific • and technical findings by NASA-sponsored contractors and grantees. NASA/TP–2014–216648/REV1 Small Spacecraft Technology State of the Art Mission Design Division Staff Ames Research Center, Moffett Field, California National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035 July 2014 Acknowledgments This report has been based largely on desk research and published documents on small spacecraft technology. Helpful suggestions and comments were also received from numerous people at NASA Ames Research Center, and in particular the authors wish to acknowledge the contributions from Aaron Cohen, Cyrus Foster, Brian Lewis, David Mauro, Matthew Nehrenz, Matthew Sorgenfrei, and Michael Soulage. The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration. Available from: NASA Center for AeroSpace Information National Technical Information Service 7115 Standard Drive 5301 Shawnee Road Hanover, MD 21076-1320 Alexandria, VA 22312 443-757-5802 703-605-6000 This report is also available in electronic form at http://www.nasa.gov/sites/default/files/files/Small_Spacecraft_Technology_State_of_the_Art_2014.pdf Abstract This report provides an overview of the current state of the art of small spacecraft technology. It was commissioned by NASA’s Small Space- craft Technology Program (SSTP) in mid-2013 in response to the rapid growth in interest in using small spacecraft for many types of missions in Earth orbit and beyond. For the sake of this assessment, small spacecraft are defined to be spacecraft with a mass less than 180 kg. This report provides a summary of the state of the art for each of the following small spacecraft technology domains: Complete spacecraft, Power, Propulsion, Attitude Determination and Control, Structures, Ma- terials and Mechanisms, Thermal Control, Command and Data Han- dling, Communications, Integration, Launch and Deployment, and Ground Data Systems and Operations. Due to the high popularity of cubesats, particular emphasis is placed on the state-of-the-art of cubesat-related technology. 1 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704–0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 01-07-2014 Technical Publication 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Small Spacecraft Technology State of the Art 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Mission Design Division Staff 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION NASA Ames Research Center REPORT NUMBER Moffett Field, California 94035 A– 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) National Aeronautics and Space Administration NASA Washington, DC 20546-0001 11. SPONSOR/MONITOR’S REPORT NUMBER(S) NASA/TP–2014–216648/REV1 12. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified-Unlimited Subject Category Availability: NASA CASI (443) 757-5802 13. SUPPLEMENTARY NOTES An electronic version can be found at http://ntrs.nasa.gov. 14. ABSTRACT This report provides an overview of the current state of the art of small spacecraft technology. It was commissioned by NASA’s Small Spacecraft Technology Program (SSTP) in mid-2013 in response to the rapid growth in interest in using small spacecraft for many types of missions in Earth orbit and beyond. For the sake of this assessment, small spacecraft are defined to be spacecraft with a mass less than 180 kg. This report provides a summary of the state of the art for each of the following small spacecraft technology domains: Complete spacecraft, Power, Propulsion, Attitude Determination and Control, Structures, Materials and Mechanisms, Thermal Control, Command and Data Handling, Communications, Integration, Launch and Deployment, and Ground Data Systems and Operations. Due to the high popularity of cubesats, particular emphasis is placed on the state-of-the-art of cubesat-related technology. 15. SUBJECT TERMS spacecraft, technology, nanosat, smallsat 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF STI Help Desk (email: [email protected]) PAGES 19b. TELEPHONE NUMBER (Include area code) U U U UU (443) 757-5802 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 . Disclaimer The document lists or describes many specific products and technologies as examples and references but their inclusion does not imply any endorsement by NASA. Failure to include any specific products or technologies that might be considered relevant under a particular topic was unintentional. NASA Ames Research Center, Mission Design Division September, 2013 Division Chief: Chad Frost Project Manager: Elwood Agasid Contributing Authors: David Biggs, John Conley, Andres Dono Perez, Nicolas Faber, Anthony Genova, Andrew Gonzales, Alessandro Grasso, James Harpur, Steven Hu, Luke Idziak, Sarah Jolitz, Jonas Jonsson, John Love, Yosuke Nakamura, Andrew Nuttall, Robin Reil, Vibha Srivastava, Travis Swenson, and Sasha Weston Table of Contents EXECUTIVE(SUMMARY(.........................................................................................................................................(2! 1.! INTRODUCTION(...........................................................................................................................................(9! 2.! SPACECRAFT(..............................................................................................................................................(13! 3.! POWER(......................................................................................................................................................(17! 4.! PROPULSION(.............................................................................................................................................(30!
Recommended publications
  • EOOS Posters Abstracts
    Posters Submissions – EOOS Conference 21 23 November 2018 1. Sylvie Pouliquen Ifremer [email protected] Authors: "Gille Reverdin CNRS/INSU email: [email protected] , Pierre-Yves Le Traon Ifremer & Mercator-Ocean email: [email protected]) and the Coriolis 2014-2020 steering committee." Theme: From standalone to integrated ocean and coastal observing platforms Title: Coriolis: an integrated in-situ ocean observation infrastructure for operational oceanography and ocean/climate research "The Coriolis (www.coriolis.eu.org) structure gathers efforts of seven French institutes (CNES, CNRS, IFREMER, IPEV, IRD, Météo-France, SHOM, CEREMA) to organize the in-situ component of the French operational oceanography infrastructure. The objective is to organize the data acquisition and real- time/delayed mode data processing of in-situ measurements required for operational oceanography and ocean/climate research. Coriolis is focused on a limited number of physical and biogeochemical parameters that are acquired systematically and in real time or slightly delayed mode. Coriolis follows a fully open data policy. The framework of collaboration for Coriolis was renewed in 2014 and now covers the time period of 2014 up to 2020. By signing this new agreement, the eight directors of French institutes have clearly stated their willingness to sustain and consolidate further the Coriolis in-situ infrastructure. The new framework agreement strengthens the links between research and operational oceanography. The scope is also extended to integrate the main French contributions to the global and regional in-situ observing systems: Argo, gliders, research vessels, ship of opportunities, drifting buoys, marine mammals, tidal networks and high frequency coastal observatories.
    [Show full text]
  • China's Touch on the Moon
    commentary China’s touch on the Moon Long Xiao As well as being a milestone in technology, the Chang’e lunar exploration programme establishes China as a contributor to space science. With much still to learn about the Moon, fieldwork beyond Earth’s orbit must be an international effort. hen China’s Chang’e 3 spacecraft geological history of the landing site. touched down on the lunar High-resolution images have shown rocky Wsurface on 14 December 2013, terrain with outcrops of porphyritic basalt, it was the first soft landing on the Moon such as Loong Rock (Fig. 2). Analysis since the Soviet Union’s Luna 24 mission of data collected by the penetrating in 1976. Following on from the decades- Chang’e 3 radar should lead to identification of the old triumphs of the Luna missions and underlying layers of regolith, impact breccia NASA’s Apollo programme, the Chang’e and basalt. lunar exploration programme is leading the China’s robotic field geologist Yutu has charge of a new generation of exploration Basalt outcrop Yutu rover stalled in its traverse of the lunar surface, on the lunar surface. Much like the earlier but plans for the Chang’e 5 sample-return space programmes, the China National mission are moving forward. The primary Space Administration (CNSA) has been objective of the mission will be to return developing its capabilities and technologies 100 m 2 kg of samples from the surface and depths step by step in a series of Chang’e missions UNIVERSITY STATE © NASA/GSFC/ARIZONA of up to 2 m, probably also in the relatively of increasing ambition: orbiting and Figure 1 | The Chinese Chang’e 3 spacecraft and smooth northern Mare Imbrium.
    [Show full text]
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • Dod Space Technology Guide
    Foreword Space-based capabilities are integral to the U.S.’s national security operational doctrines and processes. Such capa- bilities as reliable, real-time high-bandwidth communica- tions can provide an invaluable combat advantage in terms of clarity of command intentions and flexibility in the face of operational changes. Satellite-generated knowledge of enemy dispositions and movements can be and has been exploited by U.S. and allied commanders to achieve deci- sive victories. Precision navigation and weather data from space permit optimal force disposition, maneuver, decision- making, and responsiveness. At the same time, space systems focused on strategic nuclear assets have enabled the National Command Authorities to act with confidence during times of crisis, secure in their understanding of the strategic force postures. Access to space and the advantages deriving from operat- ing in space are being affected by technological progress If our Armed Forces are to be throughout the world. As in other areas of technology, the faster, more lethal, and more precise in 2020 advantages our military derives from its uses of space are than they are today, we must continue to dynamic. Current space capabilities derive from prior invest in and develop new military capabilities. decades of technology development and application. Joint Vision 2020 Future capabilities will depend on space technology programs of today. Thus, continuing investment in space technologies is needed to maintain the “full spectrum dominance” called for by Joint Vision 2010 and 2020, and to protect freedom of access to space by all law-abiding nations. Trends in the availability and directions of technology clearly suggest that the U.S.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • The BRITE-Constellation Nanosatellite Space Mission and Its First Scientific Results
    EPJ Web of Conferences 160, 01001 (2017) DOI: 10.1051/epjconf/201716001001 Seismology of the Sun and the Distant Stars II The BRITE-Constellation Nanosatellite Space Mission And Its First Scientific Results G. Handler1,, A. Pigulski2, W. W. Weiss3, A.F.J.Moffat4, R. Kuschnig3,5, G. A. Wade6, P. Orleanski´ 7, S. M. Rucinski´ 8, O. Koudelka5, R. Smolec1, K. Zwintz9, J. M. Matthews10, A. Popowicz11, D. Baade12, C. Neiner13, A. A. Pamyatnykh1, J. Rowe14, and A. Schwarzenberg-Czerny1 1Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland 2Instytut Astronomiczny, Uniwersytet Wrocławski, ul. Kopernika 11, 51-622 Wrocław, Poland 3Institute for Astrophysics, Universität Wien, Türkenschanzstrasse 17, A-1180 Wien, Austria 4Départment de physique, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada 5Institut für Kommunikationsnetze und Satellitenkommunikation, Inffeldgasse 12/I, 8010 Graz, Austria 6Department of Physics, Royal Military College of Canada, PO Box 17000, Stn Forces, Kingston, ON K7K 7B4, Canada 7Centrum Badan´ Kosmicznych, Polska Akademia Nauk, Bartycka 18A, 00-716 Warszawa, Poland 8Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada 9Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstrasse 25/8, 6020, Innsbruck, Austria 10Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada 11Silesian University of Technology, Institute of Automatic Control, Gliwice, Akademicka 16, Poland 12European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching b. München, Germany 13LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon, France 14Institut de recherche sur les exoplanétes, iREx, Département de physique, Université de Montréal, Montréal, QC, H3C 3J7, Canada Abstract.
    [Show full text]
  • Cubesat Data Analysis Revision
    371-XXXXX Revision - CubeSat Data Analysis Revision - November 2015 Prepared by: GSFC/Code 371 National Aeronautics and Goddard Space Flight Center Space Administration Greenbelt, Maryland 20771 371-XXXXX Revision - Signature Page Prepared by: ___________________ _____ Mark Kaminskiy Date Reliability Engineer ARES Corporation Accepted by: _______________________ _____ Nasir Kashem Date Reliability Lead NASA/GSFC Code 371 1 371-XXXXX Revision - DOCUMENT CHANGE RECORD REV DATE DESCRIPTION OF CHANGE LEVEL APPROVED - Baseline Release 2 371-XXXXX Revision - Table of Contents 1 Introduction 4 2 Statement of Work 5 3 Database 5 4 Distributions by Satellite Classes, Users, Mass, and Volume 7 4.1 Distribution by satellite classes 7 4.2 Distribution by satellite users 8 4.3 CubeSat Distribution by mass 8 4.4 CubeSat Distribution by volume 8 5 Annual Number of CubeSats Launched 9 6 Reliability Data Analysis 10 6.1 Introducing “Time to Event” variable 10 6.2 Probability of a Successful Launch 10 6.3 Estimation of Probability of Mission Success after Successful Launch. Kaplan-Meier Nonparametric Estimate and Weibull Distribution. 10 6.3.1 Kaplan-Meier Estimate 10 6.3.2 Weibull Distribution Estimation 11 6.4 Estimation of Probability of mission success after successful launch as a function of time and satellite mass using Weibull Regression 13 6.4.1 Weibull Regression 13 6.4.2 Data used for estimation of the model parameters 13 6.4.3 Comparison of the Kaplan-Meier estimates of the Reliability function and the estimates based on the Weibull regression 16 7 Conclusion 17 8 Acknowledgement 18 9 References 18 10 Appendix 19 Table of Figures Figure 4-1 CubeSats distribution by mass ....................................................................................................
    [Show full text]
  • Analysis and Design of Integrated Magnetorquer Coils for Attitude Control of Nanosatellites
    Analysis and Design of Integrated Magnetorquer Coils for Attitude Control of Nanosatellites Hassan Ali*, M. Rizwan Mughal*†, Jaan Praks †, Leonardo M. Reyneri+, Qamar ul Islam* * †Department of Electrical Engineering, Institute of Space Technology, Islamabad, Pakistan, †Department of Electronic and Nano Engineering, Aalto University, Espoo, Finland +Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy Abstract—The nanosatellites typically use either magnetic rods or become a challenge. In order to stabilize the tumbling satellite, coil to generate magnetic moment which consequently interacts the attitude control system is very necessary. There are two with the earth magnetic field to generate torque. In this research, types of attitude control systems i.e. passive and active [1-6]. we present a novel design which integrates printed embedded The permanent magnetics and the gravity gradients are passive coils, compact coils and magnetic rods in a single package which type. They being cost effective, consume no power but no is also complaint with 1U CubeSat. These options provide maximum flexibility, redundancy and scalability in the design. pointing accuracy is achieved using these types of actuators. The printed coils consume no extra space because the copper The majority of the missions these days require better pointing traces are printed in the internal layers of the printed circuit accuracies. The active control systems are typically used for in board (PCB). Moreover, they can be made reconfigurable by missions where better pointing accuracy is desired. The printing them into certain layers of the PCB, allowing the user to magnetorquer is a good option to control the attitude of select any combination of series and parallel coils for optimized nanosatellite.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Design of the Alpha Cubesat: Technology Demonstration of a Chipsat-Equipped Retroreflective Light Sail
    AIAA SciTech Forum 10.2514/6.2021-1254 11–15 & 19–21 January 2021, VIRTUAL EVENT AIAA Scitech 2021 Forum Design of the Alpha CubeSat: Technology Demonstration of a ChipSat-Equipped Retroreflective Light Sail Joshua S. Umansky-Castro,∗ João Maria B. Mesquita, † Avisha Kumar, ‡ Maxwell Anderson, § Tan Yaw Tung, ¶ Jenny J. Wen, ‖ V. Hunter Adams ∗∗ and Mason A. Peck †† Cornell University, Ithaca, NY, 14850 Andrew Filo ‡‡ 4Special Projects, Cupertino, CA, 95014 Davide Carabellese§§ Politecnico di Torino, Turin, Italy 10129 C Bangs ¶¶ Brooklyn, NY, 11216 Martina Mrongovius ∗∗∗ HoloCenter, Queens, NY 10004 Gregory L. Matloff ††† City Tech, Brooklyn, NY 11201 This paper provides an overview of Alpha, a rapidly developed, low-cost CubeSat mission to verify the performance of a highly retroreflective material for light-sail propulsion. Designed, integrated, and tested by students of the Space Systems Design Studio at Cornell University, this mission demonstrates a number of key technologies that enable next-generation capabilities for space exploration. In particular, this paper focuses on the novel application of ChipSats (gram scale spacecraft-on-a-chip technology) as a means of verifying Alpha’s sail orbit and attitude dynamics. Other innovations include an entirely 3D-printed structure to enable quick and inexpensive prototyping, an onboard Iridium modem that bypasses the need for ground- station radio equipment, retroreflective sail material that provides more deterministic thrust from laser illumination, and an attitude-control subsystem that provides full attitude and angular-rate control using magnetorquers only. In addition to these near-term technology demonstrations, Alpha is among the first exhibitions of holography in space, a medium that shows longer-term promise in several roles for interstellar travel.
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]