A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems

Total Page:16

File Type:pdf, Size:1020Kb

A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems Benyamin Y. Y. Aziz, M.Sc. School of Computing, Dublin City University A thesis presented in fulfillment of the requirements for the degree of Doctor of Philosophy Supervisor: Dr Geoff Hamilton September 2003 “Start by doing what’s necessary; then do what’s possible; and suddenly you are doing the impossible” St. Francis of Assisi To Yowell, Olivia and Clotilde Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of the degree of Doctor of Philosophy (Ph.D.) is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: I.D. No.: Date: Acknowledgements I would like to thank all those people who were true sources of inspiration, knowledge, guidance and help to myself throughout the period of my doctoral research. In particular, I would like to thank my supervisor, Dr. Geoff Hamilton, without whom this work would not have seen the light. I would also like to thank Dr. David Gray, with whom I had many informative conversations, and my colleagues, Thomas Hack and Fr´ed´ericOehl, for their advice and guidance. Finally, I would like to mention that the work of this thesis was partially funded by project IMPROVE (Enterprise Ireland Strategic Grant ST/2000/94). Benyamin Aziz Abstract We introduce a static analysis framework for detecting instances of security breaches in infinite mobile and cryptographic systems specified using the languages of the π-calculus and its cryptographic extension, the spi calculus. The framework is composed from three components: First, standard denotational semantics of the π-calculus and the spi calculus are constructed based on domain theory. The resulting model is sound and adequate with respect to transitions in the operational semantics. The standard semantics is then extended correctly to non-uniformly capture the property of term substitution, which occurs as a result of communications and successful cryptographic operations. Finally, the non-standard semantics is abstracted to operate over finite domains so as to ensure the termination of the static analysis. The safety of the abstract semantics is proven with respect to the non- standard semantics. The results of the abstract interpretation are then used to capture breaches of the secrecy and authenticity properties in the analysed systems. Two initial prototype implementations of the security analysis for the π-calculus and the spi calculus are also included in the thesis. The main contributions of this thesis are summarised by the following. In the area of denotational semantics, the thesis introduces a domain-theoretic model for the spi calculus that is sound and adequate with respect to transitions in the structural operational seman- tics. In the area of static program analysis, the thesis utilises the denotational approach as the basis for the construction of abstract interpretations for infinite systems modelled by the π-calculus and the spi calculus. This facilitates the use of computationally significant mathematical concepts like least fixed points and results in an analysis that is fully compo- sitional. Also, the thesis demonstrates that the choice of the term-substitution property in mobile and cryptographic programs is rich enough to capture breaches of security properties, like process secrecy and authenticity. These properties are used to analyse a number of mo- bile and cryptographic protocols, like the file transfer protocol and the Needham-Schroeder, SPLICE/AS, Otway-Rees, Kerberos, Yahalom and Woo Lam authentication protocols. Contents 1 Introduction 1 1.1 The Problem of Computer Security . 1 1.2 Mobile Systems . 3 1.3 Denotational Semantics . 6 1.4 Static Program Analysis . 8 1.4.1 Data Flow Analysis . 8 1.4.2 Control Flow Analysis . 11 1.4.3 Abstract Interpretation . 13 1.4.4 Type Systems . 15 1.5 Security Properties . 18 1.5.1 Secrecy . 18 1.5.2 Authenticity . 21 1.6 Further Reading . 23 1.7 Outline of Our Approach . 23 2 Related Work 25 2.1 Introduction . 25 2.2 Static Analysis Techniques for Program Security . 25 2.2.1 Control Flow Analysis . 25 2.2.2 Abstract Interpretation . 26 2.2.3 Type Systems . 27 2.2.4 Other Approaches . 30 2.3 Denotational Semantics of Nominal Calculi . 31 2.4 Conclusion . 33 3 Nominal Calculi 34 3.1 Introduction . 34 vi 3.2 The π-calculus . 34 3.2.1 Syntax . 35 3.2.2 Structural Operational Semantics . 36 3.2.3 Denotational Semantics . 37 3.3 The Spi Calculus . 42 3.3.1 Syntax . 43 3.3.2 Structural Operational Semantics . 45 3.3.3 Denotational Semantics . 46 3.4 Conclusion . 52 4 Abstract Interpretation 53 4.1 Introduction . 53 4.2 The π-calculus . 54 4.2.1 Non-standard Semantics . 54 4.2.2 Abstract Semantics . 57 4.2.3 The Intruder I ............................... 62 4.2.4 The FTP Server Example . 63 4.3 The Spi Calculus . 67 4.3.1 Non-standard Semantics . 68 4.3.2 Abstract Semantics . 71 4.3.3 The Intruder I . 78 4.3.4 The Needham-Schroeder Public-Key Protocol Example . 79 4.3.5 The SPLICE/AS Protocol Example . 83 4.3.6 The Otway-Rees Protocol Example . 86 4.3.7 The Kerberos Protocol Example . 90 4.3.8 The Yahalom Protocol Example . 93 4.3.9 The Woo-Lam One-Way Authentication Protocol Example . 95 4.4 Conclusion . 98 5 Security Properties 99 5.1 Introduction . 99 5.2 Secrecy . 99 5.2.1 Mobile Systems . 100 5.2.2 Cryptographic Protocols . 101 5.3 Authenticity . 102 5.3.1 Mobile Systems . 103 vii 5.3.2 Cryptographic Protocols . 104 5.4 Examples . 105 5.4.1 The FTP Server Example . 105 5.4.2 The Needham-Schroeder Public-Key Protocol Example . 107 5.4.3 The SPLICE/AS Protocol Example . 109 5.4.4 The Otway-Rees Protocol Example . 110 5.4.5 The Kerberos Protocol Example . 112 5.4.6 The Yahalom Protocol Example . 114 5.4.7 The Woo-Lam Protocol Example . 115 5.5 Conclusion . 117 6 Automatic Tools 118 6.1 Introduction . 118 6.2 Picasso: A Pi-Calculus Analyser for Secrecy and Security Objectives . 118 6.3 Spicasso: A Spi-Calculus Analyser for Secrecy and Security Objectives . 123 6.4 Conclusion . 127 7 Conclusion and Future Work 128 7.1 Research Contributions . 130 7.1.1 Denotational Semantics . 130 7.1.2 The Static Analysis of Nominal Calculi . 130 7.1.3 Program Security . 131 7.2 Future Work . 132 7.2.1 Communication Secrecy . 132 7.2.2 Message Independence . 132 7.2.3 Language Extensions . 134 A Proofs 150 A.1 Safety of the ∪φ operation in the π-calculus (Lemma 1) . 150 A.2 Safety of the abstract semantics of the π-calculus (Theorem 5) . 152 A.3 Safety of the ∪φ operation in the spi calculus (Lemma 2) . 160 A.4 Safety of the abstract semantics for the spi calculus (Theorem 8) . 162 viii List of Figures 1.1 The flow graph of the factorial program. 9 1.2 The solution of the reaching definitions analysis for the factorial program. 10 1.3 Types for the reaching definitions analysis. 16 3.1 Syntax of the π-calculus. 35 3.2 Rules of the labelled transition relation in the π-calculus. 36 3.3 Elements of In, Out and P i⊥............................ 38 3.4 The definition of new for the π-calculus. 39 3.5 The denotational semantics of the π-calculus. 40 3.6 The syntax of the spi calculus. 44 3.7 Rules of the labelled transition relation in the spi calculus. 46 3.8 Elements of the predomain of terms T ....................... 48 3.9 Elements of In, Out, and Spi ⊥........................... 48 3.10 The definition of new for the spi calculus. 49 3.11 The denotational semantics of the spi calculus. 50 4.1 The non-standard semantics of the π-calculus. 56 4.2 The abstract semantics of the π-calculus. 59 4.3 The non-standard semantics of the spi calculus. 69 4.3 The non-standard semantics of the spi.
Recommended publications
  • Thomas Ströhlein's Endgame Tables: a 50Th Anniversary
    Thomas Ströhlein's Endgame Tables: a 50th Anniversary Article Supplemental Material The Festschrift on the 40th Anniversary of the Munich Faculty of Informatics Haworth, G. (2020) Thomas Ströhlein's Endgame Tables: a 50th Anniversary. ICGA Journal, 42 (2-3). pp. 165-170. ISSN 1389-6911 doi: https://doi.org/10.3233/ICG-200151 Available at http://centaur.reading.ac.uk/90000/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: https://content.iospress.com/articles/icga-journal/icg200151 To link to this article DOI: http://dx.doi.org/10.3233/ICG-200151 Publisher: The International Computer Games Association All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online 40 Jahre Informatik in Munchen:¨ 1967 – 2007 Festschrift Herausgegeben von Friedrich L. Bauer unter Mitwirkung von Helmut Angstl, Uwe Baumgarten, Rudolf Bayer, Hedwig Berghofer, Arndt Bode, Wilfried Brauer, Stephan Braun, Manfred Broy, Roland Bulirsch, Hans-Joachim Bungartz, Herbert Ehler, Jurgen¨ Eickel, Ursula Eschbach, Anton Gerold, Rupert Gnatz, Ulrich Guntzer,¨ Hellmuth Haag, Winfried Hahn (†), Heinz-Gerd Hegering, Ursula Hill-Samelson, Peter Hubwieser, Eike Jessen, Fred Kroger,¨ Hans Kuß, Klaus Lagally, Hans Langmaack, Heinrich Mayer, Ernst Mayr, Gerhard Muller,¨ Heinrich Noth,¨ Manfred Paul, Ulrich Peters, Hartmut Petzold, Walter Proebster, Bernd Radig, Angelika Reiser, Werner Rub,¨ Gerd Sapper, Gunther Schmidt, Fred B.
    [Show full text]
  • Graduationl Speakers
    Graduationl speakers ~~~~~~~~*L-- --- I - I -· P 8-·1111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stress public service By Andrew L. Fish san P. Thomas, MIT's Lutheran MIT President Paul E. Gray chaplain, who delivered the inlvo- '54 told graduating students that cation. "Grant that we may use their education is "more than a the privilege of this MIT educa- meal ticket" and should be used tion and degree wisely - not as to serve "the public interest and an entitlement to power or re- the common good." His remarks gard, but as a means to serve," were made at MIT's 122nd com- Thomas said. "May the technol- mencement on May 27. A total ogy that we use and develop be of 1733 students received 1899 humane, and the world we create degrees at the ceremony, which with it one in which people can was held in Killian Court under live more fully human lives rather sunny skies, than less, a world where clean air The importance of public ser- and water, adequate food and vice was also emphasized by Su- shelter, and freedom from fear and want are commonplace rath- Prof. IVMurman er than exceptional." named to Proj. Text of CGray's commencement address. Page 2. Athena post In his commencement address, By Irene Kuo baseball's National League Presi- Professor Earll Murman of the dent A. Bartlett Giamatti urged Department of Aeronautics and graduates to "have the courage to Astronautics was recently named connect" with people of all ideo- the new director of Project Athe- logies. Equality will come only ~~~~~~~~~~~~~~~~~,,4. na by Gerald L.
    [Show full text]
  • The Advent of Recursion & Logic in Computer Science
    The Advent of Recursion & Logic in Computer Science MSc Thesis (Afstudeerscriptie) written by Karel Van Oudheusden –alias Edgar G. Daylight (born October 21st, 1977 in Antwerpen, Belgium) under the supervision of Dr Gerard Alberts, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: November 17, 2009 Dr Gerard Alberts Prof Dr Krzysztof Apt Prof Dr Dick de Jongh Prof Dr Benedikt Löwe Dr Elizabeth de Mol Dr Leen Torenvliet 1 “We are reaching the stage of development where each new gener- ation of participants is unaware both of their overall technological ancestry and the history of the development of their speciality, and have no past to build upon.” J.A.N. Lee in 1996 [73, p.54] “To many of our colleagues, history is only the study of an irrele- vant past, with no redeeming modern value –a subject without useful scholarship.” J.A.N. Lee [73, p.55] “[E]ven when we can't know the answers, it is important to see the questions. They too form part of our understanding. If you cannot answer them now, you can alert future historians to them.” M.S. Mahoney [76, p.832] “Only do what only you can do.” E.W. Dijkstra [103, p.9] 2 Abstract The history of computer science can be viewed from a number of disciplinary perspectives, ranging from electrical engineering to linguistics. As stressed by the historian Michael Mahoney, different `communities of computing' had their own views towards what could be accomplished with a programmable comput- ing machine.
    [Show full text]
  • Software Tools: a Building Block Approach
    SOFTWARE TOOLS: A BUILDING BLOCK APPROACH NBS Special Publication 500-14 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards ] NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the ! Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab- oratory Astrophysics^ — Cryogenics^ — Electromagnetics^ — Time and Frequency*. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure- ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti- tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Section 1: MIT Facts and History
    1 MIT Facts and History Economic Information 9 Technology Licensing Office 9 People 9 Students 10 Undergraduate Students 11 Graduate Students 12 Degrees 13 Alumni 13 Postdoctoral Appointments 14 Faculty and Staff 15 Awards and Honors of Current Faculty and Staff 16 Awards Highlights 17 Fields of Study 18 Research Laboratories, Centers, and Programs 19 Academic and Research Affiliations 20 Education Highlights 23 Research Highlights 26 7 MIT Facts and History The Massachusetts Institute of Technology is one nologies for artificial limbs, and the magnetic core of the world’s preeminent research universities, memory that enabled the development of digital dedicated to advancing knowledge and educating computers. Exciting areas of research and education students in science, technology, and other areas of today include neuroscience and the study of the scholarship that will best serve the nation and the brain and mind, bioengineering, energy, the envi- world. It is known for rigorous academic programs, ronment and sustainable development, informa- cutting-edge research, a diverse campus commu- tion sciences and technology, new media, financial nity, and its long-standing commitment to working technology, and entrepreneurship. with the public and private sectors to bring new knowledge to bear on the world’s great challenges. University research is one of the mainsprings of growth in an economy that is increasingly defined William Barton Rogers, the Institute’s founding pres- by technology. A study released in February 2009 ident, believed that education should be both broad by the Kauffman Foundation estimates that MIT and useful, enabling students to participate in “the graduates had founded 25,800 active companies.
    [Show full text]
  • Edsger W. Dijkstra: a Commemoration
    Edsger W. Dijkstra: a Commemoration Krzysztof R. Apt1 and Tony Hoare2 (editors) 1 CWI, Amsterdam, The Netherlands and MIMUW, University of Warsaw, Poland 2 Department of Computer Science and Technology, University of Cambridge and Microsoft Research Ltd, Cambridge, UK Abstract This article is a multiauthored portrait of Edsger Wybe Dijkstra that consists of testimo- nials written by several friends, colleagues, and students of his. It provides unique insights into his personality, working style and habits, and his influence on other computer scientists, as a researcher, teacher, and mentor. Contents Preface 3 Tony Hoare 4 Donald Knuth 9 Christian Lengauer 11 K. Mani Chandy 13 Eric C.R. Hehner 15 Mark Scheevel 17 Krzysztof R. Apt 18 arXiv:2104.03392v1 [cs.GL] 7 Apr 2021 Niklaus Wirth 20 Lex Bijlsma 23 Manfred Broy 24 David Gries 26 Ted Herman 28 Alain J. Martin 29 J Strother Moore 31 Vladimir Lifschitz 33 Wim H. Hesselink 34 1 Hamilton Richards 36 Ken Calvert 38 David Naumann 40 David Turner 42 J.R. Rao 44 Jayadev Misra 47 Rajeev Joshi 50 Maarten van Emden 52 Two Tuesday Afternoon Clubs 54 2 Preface Edsger Dijkstra was perhaps the best known, and certainly the most discussed, computer scientist of the seventies and eighties. We both knew Dijkstra |though each of us in different ways| and we both were aware that his influence on computer science was not limited to his pioneering software projects and research articles. He interacted with his colleagues by way of numerous discussions, extensive letter correspondence, and hundreds of so-called EWD reports that he used to send to a select group of researchers.
    [Show full text]
  • A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems
    A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems Benyamin Y. Y. Aziz, M.Sc. School of Computing, Dublin City University A thesis presented in fulfillment of the requirements for the degree of Doctor of Philosophy Supervisor: Dr Geoff Hamilton September 2003 “Start by doing what’s necessary; then do what’s possible; and suddenly you are doing the impossible” St. Francis of Assisi To Yowell, Olivia and Clotilde Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of the degree of Doctor of Philosophy (Ph.D.) is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: I.D. No.: Date: Acknowledgements I would like to thank all those people who were true sources of inspiration, knowledge, guidance and help to myself throughout the period of my doctoral research. In particular, I would like to thank my supervisor, Dr. Geoff Hamilton, without whom this work would not have seen the light. I would also like to thank Dr. David Gray, with whom I had many informative conversations, and my colleagues, Thomas Hack and Fr´ed´ericOehl, for their advice and guidance. Finally, I would like to mention that the work of this thesis was partially funded by project IMPROVE (Enterprise Ireland Strategic Grant ST/2000/94). Benyamin Aziz Abstract We introduce a static analysis framework for detecting instances of security breaches in infinite mobile and cryptographic systems specified using the languages of the π-calculus and its cryptographic extension, the spi calculus.
    [Show full text]
  • A Common Programming Language for the Depart Final Ment of Defenses-Background and Technical January -December 1975 1 Requirements «
    Approved for public release; distribution unlimited I 1 PAPER P-1191 A COMMON PROGRAMMING LANGUAGE 1 FOR THE DEPARTMENT OF DEFENSE - - I BACKGROUND AND TECHNICAL REQUIREMENTS I I D. A. Fisher June 1976 I 1 I I I I INSTITUTE FOR DEFENSE ANALYSES I SCIENCE AND TECHNOLOGY DIVISION I I IDA Log No. HQ 76-18215 I Cop-)*- > . -JJ . of 155. cop I ess Approved for public release; distribution unlimited I I I I The work reported in this document was conducted under contract DAHC15 73 C 0200 for the Department of Defense. The publication I of this IDA Paper does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of that agency. I I I I This document has been approved for public release, distribution is unlimited. I I 1 1 1 I I I Copyright IDA/Scanned June 2007 I 1 Approved for public release; distribution unlimited UNCLASSIFIED - ©; ; ; : ;" -; .©, . 1 SECURITY CLASSIFICATION OF THIS PAGE CWnen DM* Entered; READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM ). RECIPIENT©S CATALOG NUMBER 1 Paper P-J.191. 4. TITLE fend Subtitle.) 5. TYPE Of REPORT e PERIOD COVERED A Common Programming Language for the Depart Final ment of Defenses-Background and Technical January -December 1975 1 Requirements «. PERFORMING ORG. REPORT NUMBER P-1191 I. CONTRACT OR GRANT NUMBERflJ 1 DAHC15 73 C 0200 D.A, Fisher 10. PROGRAM ELEMENT. PROJECT TASK 1 INSTITUTE FOR DEFENSE ANALYSES AREA * WORK UNIT NUMBERS 400 Army-Navy Drive Task T-36 Arlington. Virginia 22202 11.
    [Show full text]
  • Early Life: 1924–1945
    An interview with FRITZ BAUER Conducted by Ulf Hashagen on 21 and 26 July, 2004, at the Technische Universität München. Interview conducted by the Society for Industrial and Applied Mathematics, as part of grant # DE-FG02-01ER25547 awarded by the US Department of Energy. Transcript and original tapes donated to the Computer History Museum by the Society for Industrial and Applied Mathematics © Computer History Museum Mountain View, California ABSTRACT: Professor Friedrich L. Bauer describes his career in physics, computing, and numerical analysis. Professor Bauer was born in Thaldorf, Germany near Kelheim. After his schooling in Thaldorf and Pfarrkirchen, he received his baccalaureate at the Albertinium, a boarding school in Munich. He then faced the draft into the German Army, serving first in the German labor service. After training in France and a deployment to the Eastern Front in Kursk, he was sent to officer's school. His reserve unit was captured in the Ruhr Valley in 1945 during the American advance. He returned to Pfarrkirchen in September 1945 and in spring of 1946 enrolled in mathematics and physics at the Ludwig-Maximilians-Universitäat, München. He studied mathematics with Oscar Perron and Heinrich Tietze and physics with Arnold Sommerfeld and Paul August Mann. He was offered a full assistantship with Fritz Bopp and finished his Ph.D. in 1951 writing on group representations in particle physics. He then joined a group in Munich led by a professor of mathematics Robert Sauer and the electrical engineer Hans Piloty, working with a colleague Klaus Samelson on the design of the PERM, a computer based in part on the Whirlwind concept.
    [Show full text]
  • Static Analyses for Stratego Programs
    Static analyses for Stratego programs BSc project report June 30, 2011 Author name Vlad A. Vergu Author student number 1195549 Faculty Technical Informatics - ST track Company Delft Technical University Department Software Engineering Commission Ir. Bernard Sodoyer Dr. Eelco Visser 2 I Preface For the successful completion of their Bachelor of Science, students at the faculty of Computer Science of the Technical University of Delft are required to carry out a software engineering project. The present report is the conclusion of this Bachelor of Science project for the student Vlad A. Vergu. The project has been carried out within the Software Language Design and Engineering Group of the Computer Science faculty, under the direct supervision of Dr. Eelco Visser of the aforementioned department and Ir. Bernard Sodoyer. I would like to thank Dr. Eelco Visser for his past and ongoing involvment and support in my educational process and in particular for the many opportunities for interesting and challenging projects. I further want to thank Ir. Bernard Sodoyer for his support with this project and his patience with my sometimes unconvential way of working. Vlad Vergu Delft; June 30, 2011 II Summary Model driven software development is gaining momentum in the software engi- neering world. One approach to model driven software development is the design and development of domain-specific languages allowing programmers and users to spend more time on their core business and less on addressing non problem- specific issues. Language workbenches and support languages and compilers are necessary for supporting development of these domain-specific languages. One such workbench is the Spoofax Language Workbench.
    [Show full text]
  • Oral History Interview with Friedrich L. Bauer
    An Interview with FRIEDRICH L. BAUER OH 128 Conducted by William Aspray on 17 February 1987 Munich, West Germany Charles Babbage Institute The Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute 1 Friedrich L. Bauer Interview 17 February 1987 Abstract Bauer briefly reviews his early life and education in Bavaria through his years in the German army during World War II. He discusses his education in mathematics and theoretical physics at the University of Munich through the completion of his Ph.D. in 1952. He explains how he first came in contact with work on modern computers through a seminar in graduate school and how he and Klaus Samelson were led to join the PERM group in 1952. Work on the hardware design and on compilers is mentioned. Bauer then discusses the origins and design of the logic computer STANISLAUS, and his role in its development. The next section of the interview describes the European side of the development of ALGOL, including his work and that of Rutishauser, Samelson, and Bottenbrach. The interview concludes with a brief discussion of Bauer's work in numerical analysis in the 1950s and 1960s and his subsequent investigations of programming methodology. 2 FRIEDRICH L. BAUER INTERVIEW DATE: 17 February 1987 INTERVIEWER: William Aspray LOCATION: Deutsches Museum, Munich, West Germany ASPRAY: This is an interview on the 17th of February, 1987 at the Deutsches Museum in Munich. The interviewer is William Aspray of the Charles Babbage Institute. The interview subject is Dr. F. L. Bauer. Let's begin by having you discuss very briefly your early career in education, say up until World War II.
    [Show full text]
  • User's Manual for the ALCR-ILLINIS-7090 ALGL-60
    •::../. ; '-> v.- V. -V.' skss Hi *lSn i'-fh B£H*wffi H HI BBfiffli? •LN. fln WW* WSMmm Ml H II B RAI^Y OF THE UN IVLRSITY Of ILLINOIS SlO.84 XSibus 1964 The person charging this material is re- sponsible for its return on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. University of Illinois Library i 1970 LI61— O-10Q6 Digitized by the Internet Archive in 2013 http://archive.org/details/usersmanualforalOOuniv »" DIGITAL COMPUTER LABORATORY GRADUATE COLLEGE UNIVERSITY OF ILLINOIS User's Manual for the ALCpR-ILLIN0IS-7O9O ALG0L-6O Translator University of Illinois 2nd Edition Manual Written and Revised by R. Bayer E. Murphree, Jr. D. Gries September 28, I96U . : Preface In June, 19^2, by arrangement between the University of Illinois and the ALCOR group in Europe, Dr. Manfred Paul, Johannes Gutenberg Universitat, Mainz, and Dr. Rudiger Wiehle, Munchen Technische Hochschule, Munich, began the design of the ALC0R-ILLIN0IS-7O9O ALGOL-60 Translator, the use of which is described in this Manual. They were joined in July, I962, by David Gries and the writer and later by Michael Rossin, Theresa Wang and Rudolf Bayer, all graduate students at the University of Illinois This manual is an effort to explain the differences which exist between publication ALGOL-60 as it is defined by the Revised Report on the Algorithmic Language ALGOL-60 (as published in the January I963 issue of Communications of the Association for Computing Machinery) and as it actually has been implemented by the group named above, Relatively few features of ALGOL-60 have not been implemented, so this manual consists mostly of an explanation of the "hardware" representation of true ALGOL rather than deviations from it.
    [Show full text]