Introduction to the Literature on Programming Language Design Gary T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. -
The Power of Abstraction
The Power of Abstraction Barbara Liskov March 2013 MIT CSAIL Software is Complex Systems are big and they do complicated things and they may be distributed and/or concurrent Addressing Complexity Algorithms, data structures, protocols Addressing Complexity Algorithms, data structures, protocols Programming methodology Programming languages This Talk Programming methodology as it developed Programming languages Programming languages today The Situation in 1970 The software crisis! Programming Methodology How should programs be designed? How should programs be structured? The Landscape E. W. Dijkstra. Go To Statement Considered Harmful. Cacm, Mar. 1968 The Landscape N. Wirth. Program Development by Stepwise Refinement. Cacm, April 1971 The Landscape D. L. Parnas. Information Distribution Aspects of Design Methodology. IFIP Congress, 1971 “The connections between modules are the assumptions which the modules make about each other.” Modularity A program is a collection of modules Modularity A program is a collection of modules Each module has an interface, described by a specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification Modularity A program is a collection of modules Each has an interface, described by a specification A module’s implementation is correct if it meets the specification A using module depends only on the specification E.g. a sort routine sort(a) Benefits of Modularity Local reasoning Modifiability Independent development The Situation in 1970 Procedures were the only type of module Not powerful enough, e.g., a file system Not used very much Complicated connections Partitions B. -
Thomas Ströhlein's Endgame Tables: a 50Th Anniversary
Thomas Ströhlein's Endgame Tables: a 50th Anniversary Article Supplemental Material The Festschrift on the 40th Anniversary of the Munich Faculty of Informatics Haworth, G. (2020) Thomas Ströhlein's Endgame Tables: a 50th Anniversary. ICGA Journal, 42 (2-3). pp. 165-170. ISSN 1389-6911 doi: https://doi.org/10.3233/ICG-200151 Available at http://centaur.reading.ac.uk/90000/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: https://content.iospress.com/articles/icga-journal/icg200151 To link to this article DOI: http://dx.doi.org/10.3233/ICG-200151 Publisher: The International Computer Games Association All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online 40 Jahre Informatik in Munchen:¨ 1967 – 2007 Festschrift Herausgegeben von Friedrich L. Bauer unter Mitwirkung von Helmut Angstl, Uwe Baumgarten, Rudolf Bayer, Hedwig Berghofer, Arndt Bode, Wilfried Brauer, Stephan Braun, Manfred Broy, Roland Bulirsch, Hans-Joachim Bungartz, Herbert Ehler, Jurgen¨ Eickel, Ursula Eschbach, Anton Gerold, Rupert Gnatz, Ulrich Guntzer,¨ Hellmuth Haag, Winfried Hahn (†), Heinz-Gerd Hegering, Ursula Hill-Samelson, Peter Hubwieser, Eike Jessen, Fred Kroger,¨ Hans Kuß, Klaus Lagally, Hans Langmaack, Heinrich Mayer, Ernst Mayr, Gerhard Muller,¨ Heinrich Noth,¨ Manfred Paul, Ulrich Peters, Hartmut Petzold, Walter Proebster, Bernd Radig, Angelika Reiser, Werner Rub,¨ Gerd Sapper, Gunther Schmidt, Fred B. -
MIT Turing Laureates Propose Creation of School of Computing an Open Letter to President Rafael Reif
9/26/2017 The Tech OPINION LETTER TO THE EDITOR MIT Turing laureates propose creation of School of Computing An open letter to President Rafael Reif By MIT Turing Laureates | Sep. 20, 2017 Facebook Dear Rafael, Twitter There comes a time, in the course of scientic evolution, when a discipline is ready to emerge from the womb of its parent disciplines and take its own place in the world. For Reddit computer science, or more accurately, for the eld of computing, this moment is now. Print Born from a combination of mathematics and electrical engineering, with the original intent of speeding up calculations, computer science has grown to encompass all information processing and most communications and now to provide an alternative evolutionary path to intelligence. Computer science is rapidly becoming an essential part of most academic disciplines, and students are voting with their feet. One third of MIT undergraduates are majoring in computer science. This trend is unlikely to slow down anytime soon. We, the 7 active MIT Turing Award winners, therefore write this open letter to recommend that you consider the bold step of establishing a School of Computing at MIT. The new school, a brother to the Schools of Engineering and Science, will allow the eld of computing, with its many https://thetech.com/2017/09/20/turing-laureates-open-letter-to-reif 1/4 9/26/2017 The Tech facets and sub-elds, to grow and interact naturally with the Institute’s scientic and engineering environment. The Tech Submit Campus Life Stories Today the study of computation is housed primarily in the EECS department within the School of Engineering, but departments are limited in their ability to hire and grow. -
Reflexive Interpreters 1 the Problem of Control
Reset reproduction of a Ph.D. thesis proposal submitted June 8, 1978 to the Massachusetts Institute of Technology Electrical Engineering and Computer Science Department. Reset in LaTeX by Jon Doyle, December 1995. c 1978, 1995 Jon Doyle. All rights reserved.. Current address: MIT Laboratory for Computer Science. Available via http://www.medg.lcs.mit.edu/doyle Reflexive Interpreters Jon Doyle [email protected] Massachusetts Institute of Technology, Artificial Intelligence Laboratory Cambridge, Massachusetts 02139, U.S.A. Abstract The goal of achieving powerful problem solving capabilities leads to the “advice taker” form of program and the associated problem of control. This proposal outlines an approach to this problem based on the construction of problem solvers with advanced self-knowledge and introspection capabilities. 1 The Problem of Control Self-reverence, self-knowledge, self-control, These three alone lead life to sovereign power. Alfred, Lord Tennyson, OEnone Know prudent cautious self-control is wisdom’s root. Robert Burns, A Bard’s Epitath The woman that deliberates is lost. Joseph Addison, Cato A major goal of Artificial Intelligence is to construct an “advice taker”,1 a program which can be told new knowledge and advised about how that knowledge may be useful. Many of the approaches towards this goal have proposed constructing additive formalisms for trans- mitting knowledge to the problem solver.2 In spite of considerable work along these lines, formalisms for advising problem solvers about the uses and properties of knowledge are rela- tively undeveloped. As a consequence, the nondeterminism resulting from the uncontrolled application of many independent pieces of knowledge leads to great inefficiencies. -
The Effect of Compression and Expansion on Stochastic Reaction Networks
IMT School for Advanced Studies, Lucca Lucca, Italy The Effect of Compression and Expansion on Stochastic Reaction Networks PhD Program in Institutions, Markets and Technologies Curriculum in Computer Science and Systems Engineering (CSSE) XXXI Cycle By Tabea Waizmann 2021 The dissertation of Tabea Waizmann is approved. Program Coordinator: Prof. Rocco De Nicola, IMT Lucca Supervisor: Prof. Mirco Tribastone, IMT Lucca The dissertation of Tabea Waizmann has been reviewed by: Dr. Catia Trubiani, Gran Sasso Science Institute Prof. Michele Loreti, University of Camerino IMT School for Advanced Studies, Lucca 2021 To everyone who believed in me. Contents List of Figures ix List of Tables xi Acknowledgements xiii Vita and Publications xv Abstract xviii 1 Introduction 1 2 Background 6 2.1 Multisets . .6 2.2 Reaction Networks . .7 2.3 Ordinary Lumpability . 11 2.4 Layered Queuing Networks . 12 2.5 PEPA . 16 3 Coarse graining mass-action stochastic reaction networks by species equivalence 19 3.1 Species Equivalence . 20 3.1.1 Species equivalence as a generalization of Markov chain ordinary lumpability . 27 3.1.2 Characterization of SE for mass-action networks . 27 3.1.3 Computation of the maximal SE and reduced net- work . 28 vii 3.2 Applications . 31 3.2.1 Computational systems biology . 31 3.2.2 Epidemic processes in networks . 33 3.3 Discussion . 36 4 DiffLQN: Differential Equation Analysis of Layered Queuing Networks 37 4.1 DiffLQN .............................. 38 4.1.1 Architecture . 38 4.1.2 Capabilities . 38 4.1.3 Syntax . 39 4.2 Case Study: Client-Server dynamics . 41 4.3 Discussion . -
Software Tools: a Building Block Approach
SOFTWARE TOOLS: A BUILDING BLOCK APPROACH NBS Special Publication 500-14 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards ] NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the ! Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab- oratory Astrophysics^ — Cryogenics^ — Electromagnetics^ — Time and Frequency*. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure- ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti- tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. -
Computational Thinking's Influence on Research and Education For
Computational thinking’s influence on research and education for all Influenza del pensiero computazionale nella ricerca e nell’educazione per tutti Jeannette M. Wing Columbia University, New York, N.Y., USA, [email protected] HOW TO CITE Wing, J.M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14. doi: 10.17471/2499-4324/922 ABSTRACT Computer science has produced, at an astonishing and breathtaking pace, amazing technology that has transformed our lives with profound economic and societal impact. In the course of the past ten years, we have come to realize that computer science offers not just useful software and hardware artifacts, but also an intellectual framework for thinking, what I call “computational thinking”. Everyone can benefit from thinking computationally. My grand vision is that computational thinking will be a fundamental skill—just like reading, writing, and arithmetic—used by everyone by the middle of the 21st Century. KEYWORDS Computational Thinking, Education, Curriculum. SOMMARIO L’informatica ha prodotto, a un ritmo sorprendente e mozzafiato, una straordinaria tecnologia che ha profondamente trasformato le nostre vite con importanti conseguenze economiche e sociali. Negli ultimi dieci anni ci si è resi conto che l’informatica non solo offre utili artefatti software e hardware, ma anche un paradigma di ragionamento che chiamo “pensiero computazionale”. Ognuno di noi può trarre vantaggio dal pensare in modo computazionale. Mi aspetto che il pensiero computazionale costituirà un’abilità fondamentale - come leggere, scrivere e far di conto – che verrà utilizzata da tutti entro la prima metà del XXI secolo. -
The Future: the Story of Squeak, a Practical Smalltalk Written in Itself
Back to the future: the story of Squeak, a practical Smalltalk written in itself Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay [Also published in OOPSLA ’97: Proc. of the 12th ACM SIGPLAN Conference on Object-oriented Programming, 1997, pp. 318-326.] VPRI Technical Report TR-1997-001 Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761 Back to the Future The Story of Squeak, A Practical Smalltalk Written in Itself by Dan Ingalls Ted Kaehler John Maloney Scott Wallace Alan Kay at Apple Computer while doing this work, now at Walt Disney Imagineering 1401 Flower Street P.O. Box 25020 Glendale, CA 91221 [email protected] Abstract Squeak is an open, highly-portable Smalltalk implementation whose virtual machine is written entirely in Smalltalk, making it easy to debug, analyze, and change. To achieve practical performance, a translator produces an equivalent C program whose performance is comparable to commercial Smalltalks. Other noteworthy aspects of Squeak include: a compact object format that typically requires only a single word of overhead per object; a simple yet efficient incremental garbage collector for 32-bit direct pointers; efficient bulk- mutation of objects; extensions of BitBlt to handle color of any depth and anti-aliased image rotation and scaling; and real-time sound and music synthesis written entirely in Smalltalk. Overview Squeak is a modern implementation of Smalltalk-80 that is available for free via the Internet, at http://www.research.apple.com/research/proj/learning_concepts/squeak/ and other sites. It includes platform-independent support for color, sound, and image processing. -
Historical Perspective and Further Reading 162.E1
2.21 Historical Perspective and Further Reading 162.e1 2.21 Historical Perspective and Further Reading Th is section surveys the history of in struction set architectures over time, and we give a short history of programming languages and compilers. ISAs include accumulator architectures, general-purpose register architectures, stack architectures, and a brief history of ARMv7 and the x86. We also review the controversial subjects of high-level-language computer architectures and reduced instruction set computer architectures. Th e history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C+ + , and Java, and the history of compilers includes the key milestones and the pioneers who achieved them. Accumulator Architectures Hardware was precious in the earliest stored-program computers. Consequently, computer pioneers could not aff ord the number of registers found in today’s architectures. In fact, these architectures had a single register for arithmetic instructions. Since all operations would accumulate in one register, it was called the accumulator , and this style of instruction set is given the same name. For example, accumulator Archaic EDSAC in 1949 had a single accumulator. term for register. On-line Th e three-operand format of RISC-V suggests that a single register is at least two use of it as a synonym for registers shy of our needs. Having the accumulator as both a source operand and “register” is a fairly reliable indication that the user the destination of the operation fi lls part of the shortfall, but it still leaves us one has been around quite a operand short. Th at fi nal operand is found in memory. -
John Mccarthy
JOHN MCCARTHY: the uncommon logician of common sense Excerpt from Out of their Minds: the lives and discoveries of 15 great computer scientists by Dennis Shasha and Cathy Lazere, Copernicus Press August 23, 2004 If you want the computer to have general intelligence, the outer structure has to be common sense knowledge and reasoning. — John McCarthy When a five-year old receives a plastic toy car, she soon pushes it and beeps the horn. She realizes that she shouldn’t roll it on the dining room table or bounce it on the floor or land it on her little brother’s head. When she returns from school, she expects to find her car in more or less the same place she last put it, because she put it outside her baby brother’s reach. The reasoning is so simple that any five-year old child can understand it, yet most computers can’t. Part of the computer’s problem has to do with its lack of knowledge about day-to-day social conventions that the five-year old has learned from her parents, such as don’t scratch the furniture and don’t injure little brothers. Another part of the problem has to do with a computer’s inability to reason as we do daily, a type of reasoning that’s foreign to conventional logic and therefore to the thinking of the average computer programmer. Conventional logic uses a form of reasoning known as deduction. Deduction permits us to conclude from statements such as “All unemployed actors are waiters, ” and “ Sebastian is an unemployed actor,” the new statement that “Sebastian is a waiter.” The main virtue of deduction is that it is “sound” — if the premises hold, then so will the conclusions. -
April 22 -- STEPS NSF 2012 Report
! 2012 REPORT ! STEPS Toward Expressive Programming Systems ! “A#Science#Experiment”# ! by# (In#random#order)#Yoshiki#Ohshima,#Dan#Amelang,#Ted#Kaehler,#Bert#Freudenberg,# Aran#Lunzer,#Alan#Kay,#Ian#Piumarta,#Takashi#Yamamiya,#Alan#Borning,#Hesam# Samimi,#Bret#Victor,#Kim#Rose*# VIEWPOINTS#RESEARCH#INSTITUTE# # # *These#are#the#STEPS#researchers#for#the#year#2012.#For#a#complete#listing# of#the#participants#over#the#length#of#the#project#see#the#section#on#the# NSF#site#which#contains#this#report.# TABLE OF CONTENTS — The STEPS Project for the General Public Summary of the STEPS project . Origin . STEPS aims at personal computing . What does STEPS look like? . STEPS is a “science project” . General approach . “T-shirt programming” . Overall map of STEPS . General STEPS results . Making “runnable maths” . Assessing STEPS Summary of STEPS research in 2012 . Inventing & building a language for STEPS “UI and applications”, and rewriting Frank in it . Producing a workable “chain of meaning” that extends from the screen all the way to the CPU . Inventing methods that create automatic visualizers for languages created from metalanguages . Continuing the start of “What vs How” programming via “Cooperating Languages and Solvers” Reflections on the STEPS Project to Date References Outreach Activities for final year of NSF part of the STEPS project Publications for the NSF part of the STEPS project Appendix I: KScript and KSWorld Appendix II: Making Applications in KSWorld ——— ! The$STEPS$Project$For$The$General$Public$ If#computing#is#important—for#daily#life,#learning,#business,#national#defense,#jobs,#and#