Mouth Development

Total Page:16

File Type:pdf, Size:1020Kb

Mouth Development Advanced Review Mouth development Justin Chen,1,2† Laura A. Jacox,1,3,4†‡ Francesca Saldanha,1§ and Hazel Sive1,2* A mouth is present in all animals, and comprises an opening from the outside into the oral cavity and the beginnings of the digestive tract to allow eating. This review focuses on the earliest steps in mouth formation. In the first half, we con- clude that the mouth arose once during evolution. In all animals, the mouth forms from ectoderm and endoderm. A direct association of oral ectoderm and digestive endoderm is present even in triploblastic animals, and in chordates, this region is known as the extreme anterior domain (EAD). Further support for a single origin of the mouth is a conserved set of genes that form a ‘mouth gene program’ including foxA and otx2. In the second half of this review, we discuss steps involved in vertebrate mouth formation, using the frog Xenopus as a model. The vertebrate mouth derives from oral ectoderm from the anterior neural ridge, pharyngeal endoderm and cranial neural crest (NC). Vertebrates form a mouth by breaking through the body covering in a precise sequence including specifica- tion of EAD ectoderm and endoderm as well as NC, formation of a ‘pre-mouth array,’ basement membrane dissolution, stomodeum formation, and buccophar- yngeal membrane perforation. In Xenopus, the EAD is also a craniofacial organ- izer that guides NC, while reciprocally, the NC signals to the EAD to elicit its morphogenesis into a pre-mouth array. Human mouth anomalies are prevalent and are affected by genetic and environmental factors, with understanding guided in part by use of animal models. © 2017 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc. How to cite this article: WIREs Dev Biol 2017, 6:e275. doi: 10.1002/wdev.275 INTRODUCTION ulticellular animals need to eat and a mouth is Mthe organ that allows food into the digestive sys- † These authors contributed equally. tem. It comprises the opening from the outside of the ‡ Present address: Orthodontics Department, University of North animal, the oral cavity that is connected to the opening Carolina School of Dentistry, Chapel Hill, NC, USA and the beginning of the digestive system, the pharynx. § Present address: Department of Plastic and Oral Surgery, Boston Even some single-celled organisms like Paramecia have Children's Hospital, Harvard Medical School, Boston, MA, USA a mouth leading into a subcellular intestine.1 Many ani- *Correspondence to: [email protected] mals have accessory structures that assist eating and 1Whitehead Institute for Biomedical Research, Cambridge, mouth function, and increase complexity of this organ. MA, USA We hypothesize that the mouth arose once in evolution, 2 Department of Biology, Massachusetts Institute of Technology, and consider two lines of evidence that support this. Cambridge, MA, USA These include the understanding that the mouth is 3Harvard-MIT Health Sciences and Technology Program, Cam- bridge, MA, USA always built from ectodermal and endodermal lineages. fi 4Harvard School of Dental Medicine, Boston, MA, USA The rst multicellular animals with a clear mouth were 1–3 Conflict of interest: The authors have declared no conflicts of inter- diploblasts (with ectoderm and endoderm). Interest- est for this article. ingly, even in triploblastic animals that include Volume 6, September/October 2017 1of16 © 2017 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Advanced Review wires.wiley.com/devbio mesoderm, the mouth still forms from a region where Mouth formation reflects this precision and involves ectoderm and endoderm directly juxtapose.2,3 In chor- many steps over a long period of development dates, we named this region the extreme anterior (~2.5 days in Xenopus, 2 weeks in humans). These domain (EAD).4,5 Another aspect of the ancient origin steps position the mouth-forming oral ectoderm and of the mouth is conservation of gene expression, lead- digestive endoderm during gastrula and neurula stages ing to the proposal of a ‘mouth gene program.’ and open the mouth as the tadpole is ready to feed. In initial studies of the Xenopus mouth, we coined The complexity of mouth formation is one reason for the term ‘primary mouth’ to indicate the initial or the many human anomalies that include this region. immature larval mouth, and ‘secondary mouth’ to indi- cate later elaboration and differentiation of structures to form the mature mouth. Although this nomenclature ORAL EVOLUTION: IS MOUTH has been useful to the community, on consideration, we DEVELOPMENT CONSERVED? think the general term ‘mouth’ is most useful through- out development. We view mouth development as a A mouth is present from the simplest multicellular continuum, where even at the earliest time after mouth organisms to humans. The commonality of mouth opening, an oral cavity and accessory structures are function is food ingestion, but auxiliary structures already forming. This review focuses on the earliest may hold, tear or grind food, such as teeth in verte- stages of mouth formation, whereby the initial mouth brates or adult sea urchins and mandibles in opening forms and the first steps of differentiation are insects. In many animals, the mouth has evolved taking place, but before the mouth is mature. extra functions, including communication and Vertebrates have a complex mouth, derived not defense, but these are secondary to its role in eating only from EAD ectoderm and endoderm that form the (Figure 1(a) and (b)). The common function of eat- oral cavity and pharynx of the digestive tract but also ing could imply that all mouths are homologous from neural crest (NC) cells that form teeth and jaws. structures, or a mouth opening may have arisen Vertebrates are ‘deuterostomes’ where a mouth breaks multiple times in evolution. To address the question through the ectodermal covering and connects to the of whether the mouths of all animals derive from endodermal digestive tract. In the Xenopus model, an ancient, conserved origin, we discuss embryonic development of the vertebrate mouth is associated with tissue contributions, associated gene expression, reciprocal signaling between the EAD and NC.4,5 and axial position. FIGURE 1 | Mouths in adult or larval animals. Frontal views of sea anemone Anthopleura elegantissima, earth worm Lumbricus terrestris,sea urchin Strongylocentrotus purpuratus,grasshopperAnacridium aegyptium,lampreyPetromyzon marinus, tadpole of frog Xenopus laevis,falconFalco cherrug, and human Homo sapiens. Red dotted line denotes the border of the oral cavity. Md, mandible; Mx, maxilla; P, pharynx; T, teeth; Tg, tongue. 2of16 © 2017 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc. Volume 6, September/October 2017 WIREs Developmental Biology Mouth development All Mouths are Made from contributes to the pharynx. In this case, oral ecto- Ectoderm + Endoderm derm and digestive endoderm are adjacent to each One of the most persuasive pieces of evidence that other throughout gastrulation and move in the same the mouth evolved only once is that in all animals the direction towards the blastopore. mouth arises from ectodermal and endodermal germ Triploblast mouth formation is more compli- layers.1 In general, the ectoderm is characterized by cated as the digestive endoderm must move a consid- strong junctions and forms a protective outer cover- erable distance to meet the oral ectoderm. In ing. The endoderm enters the embryo during gastru- deuterostomes, blastula stage embryos have a germ lation to form the innermost layer of cells and layer position opposite that of diploblasts where ectoderm is located in the animal hemisphere and contributes to the digestive system. The mouth is 7 therefore a joint ectodermal/endodermal structure as endoderm in the vegetal hemisphere (Figure 2). The it connects an opening in the ectodermal covering to blastopore remains associated with endoderm, as in the digestive endoderm.3 diploblasts, but forms in the vegetal hemisphere. This tissue arrangement is obvious in diploblasts During gastrulation the oral ectoderm remains rela- where there are only ectodermal and endodermal tively stationary and the digestive endoderm migrates germ layers.1 Ectodermal, mesodermal, and endoder- the entire length of the embryo towards animal pole mal germ layers are present in the triploblasts, which derived ectoderm, and together these layers form the include the bilateria—divided into deuterostome and mouth. A simple example of this morphogenesis is protostome groups. Deuterostomes break a mouth found in sea urchins where the archenteron (endo- opening through the ectodermal covering. Strikingly, derm) migrates towards and meets the oral ectoderm. in deuterostomes, the mouth develops as in diplo- An additional layer of detail is present in verte- brate embryos where both mouth ectoderm and blasts from ectoderm and endoderm, and the meso- endoderm are comprised of tissues arising from dif- dermal layer is not involved. Indeed, a unique ferent locations. In sea urchins and basal deuteros- anterior region of the deuterostome embryo is devoid tomes that lack a central nervous system or brain, of mesoderm, so that future oral ectoderm and future mouth ectoderm arises from the epidermal layers.9 In foregut (anterior) endoderm are directly juxtaposed2,3 vertebrates, oral ectoderm derives also from the ante- and go on to form the mouth (Figure 2). In chordates, 4 rior neural ridge (ANR), the front of the neural we named this region the EAD. It is unclear whether plate.5 This dual source of mouth ectoderm is also mesoderm is actively prevented from entering the found in Ciona, an invertebrate chordate, whose EAD, perhaps by preferential oral ectoderm/endo- mouth is derived from the anterior neuropore.10 derm adhesion, or whether mesoderm is intrinsically Thus in chordates, development of the mouth pri- unable to migrate to the anterior.
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • Microbial Biogeography and Ecology of the Mouth and Implications for Periodontal
    bioRxiv preprint doi: https://doi.org/10.1101/541052; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. Microbial biogeography and ecology of the mouth and implications for periodontal diseases Authors: Diana M. Proctor1,2,10, Katie M. Shelef3,10, Antonio Gonzalez4, Clara L. Davis Long5, Les Dethlefsen1, Adam Burns1, Peter M. Loomer6, Gary C. Armitage7, Mark I. Ryder7, Meredith E. Millman7, Rob Knight4, Susan P. Holmes8, David A. Relman1,5,9 Affiliations 1Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA 2National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA 3Department of Biology, Stanford University School of Medicine, Stanford, CA 94305 USA 4Departments of Pediatrics and Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093 USA 5Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA 6Ashman Department of Periodontology & Implant Dentistry, New York University College of Dentistry, New York, NY 10010 USA 7Division of Periodontology, University of California, San Francisco School of Dentistry, San Francisco, CA 94143 USA 8Department of Statistics, Stanford University, Stanford, CA 94305 USA 9Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA 10These authors contributed equally Corresponding author: David A. Relman: [email protected]; Address: Encina E209, 616 Serra Street, Stanford, California 94305-6165; Phone: 650-736-6822; Fax: 650-852-3291 1 bioRxiv preprint doi: https://doi.org/10.1101/541052; this version posted February 8, 2019.
    [Show full text]
  • Dynamic Evaluation of Forces During Mastication
    Project Number: ME-SYS-0787 Dynamic Evaluation of Forces During Mastication A Major Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of requirements for the Degree of Bachelor of Science By Justin McGarry Anthony Spangenberger Date: Approval: Professor Satya Shivkumar, Advisor Abstract A reproduction of the human masticatory system is presented here to evaluate mechanical properties of foods, relevant design elements of the simulator, and the overall practicality of the system. The model incorporates a cam-driven linkage system providing realistic motion of the mandible, with reaction forces measured by strain gages on two axes to record real time changes in food structure. The experiment demonstrates that the construction of a mastication simulator is feasible and allows texture profiling and discrimination between similar foods. i Acknowledgements Our MQP was completed with the help of several individuals who offered professional advice and technical guidance. We would like to thank Prof. Satya Shivkumar, our project advisor, for guiding us with his extensive knowledge of materials and testing procedures, Prof. John Hall for his help with the sensors used in this project and his willingness to lend some of the necessary equipment, Prof. Robert Norton for his advice on the fixture design, Fred Hutson for lending equipment from the physics department for use in calibration of the fixture, Randy Robinson for the computer used for recording data, Neil Whitehouse, Toby Bergstrom, and Adam
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Embryology of Branchial Region
    TRANSCRIPTIONS OF NARRATIONS FOR EMBRYOLOGY OF THE BRANCHIAL REGION Branchial Arch Development, slide 2 This is a very familiar picture - a median sagittal section of a four week embryo. I have actually done one thing correctly, I have eliminated the oropharyngeal membrane, which does disappear sometime during the fourth week of development. The cloacal membrane, as you know, doesn't disappear until the seventh week, and therefore it is still intact here, but unlabeled. But, I've labeled a couple of things not mentioned before. First of all, the most cranial part of the foregut, that is, the part that is cranial to the chest region, is called the pharynx. The part of the foregut in the chest region is called the esophagus; you probably knew that. And then, leading to the pharynx from the outside, is an ectodermal inpocketing, which is called the stomodeum. That originally led to the oropharyngeal membrane, but now that the oropharyngeal membrane is ruptured, the stomodeum is a pathway between the amniotic cavity and the lumen of the foregut. The stomodeum is going to become your oral cavity. Branchial Arch Development, slide 3 This is an actual picture of a four-week embryo. It's about 5mm crown-rump length. The stomodeum is labeled - that is the future oral cavity that leads to the pharynx through the ruptured oropharyngeal membrane. And I've also indicated these ridges separated by grooves that lie caudal to the stomodeum and cranial to the heart, which are called branchial arches. Now, if this is a four- week old embryo, clearly these things have developed during the fourth week, and I've never mentioned them before.
    [Show full text]
  • UCDH Dental Hygiene Glossary Editorial Compilation/Consultant Special Thanks
    UCDH Dental Hygiene Glossary A Faculty/Student Venture Editorial Compilation/Consultant Brent Molen RDH, Med College President/Chief Operations Officer Assistant Professor, The Utah College of Dental Hygiene at Careers Unlimited Special Thanks A special thanks goes out to all the dental hygiene students of the classes of 2009, 2010, and 2011 who have helped make this venture possible and who have contributed their efforts to it. The information contained in this glossary is to be used by the dental hygiene professional only and for dental education purposes only. It is not intended for the general public. Any sale, distribution, copying, dissemination, or duplication of this glossary without written permission is strictly prohibited. If you have received this glossary electronically in error, please call (801) 426-8234 (USA) or notify by return email [email protected] immediately & delete or destroy the digital file. Copyright 2010 Careers Unlimited L.L.C. UCDH is a division of Careers Unlimited L.L.C. Abducens Nerve: the sixth cranial nerve, which controls movement of one single muscle, the lateral rectus muscle, of the eye. Abrasive: to scratch a surface or have rough texture being able to remove a layer. Abscess: the destruction of tissue due to activity of bacteria producing pus, pain and swelling as result of microscopic cellular activity. Abuse: to do harm or wrong doing to others or yourself; by physical or chemical means. Abutment: a tooth, root or implant that serves as the support or anchor to a denture or a fixed or removable bridge. See pontics. Abutment: a tooth, root, or implant that supports and maintains position of a fixed or removable prosthesis.
    [Show full text]
  • Forensic Archaeology & Forensic Anthropology
    Forensic Archaeology & Forensic Anthropology ADJ14 Advanced Criminal Investigations Anthropology & Archaeology ´ Anthropology is the study of the biological and cultural aspects of all humans in all places in all times. ´ Archaeology is the study of human history and prehistory through the excavation of sites and the analysis of artifacts and other physical remains. Introduction to Forensic Archaeology & Forensic Anthropology ´ Forensic Anthropology is the field of study that deals with the analysis of human skeletal remains resulting from unexplained deaths. Experts in the discipline, because of their understanding of skeletal biology, examine human bones with the goal of extracting information about persons represented by skeletal remains and circumstances surrounding death (Byers, 2011). ´ Forensic Archaeology is a subfield of forensic anthropology, and forensic archaeology is the forensic application of archaeological techniques. Archaeology is the study of humans, both modern and ancient. Specifically, forensic archeologists perform the controlled recovery of human remains and other evidence at forensic scenes. Proper archeological procedures generally require significant time and attention to detail, and so the process may seem rather slow to investigators. However, the end result of this effort is the ability to exactly reconstruct the entire scene as it appeared before excavation (Nawracki, 1996). Forensic Anthropology ´ Forensic anthropologists attempt to accomplish 5 main objectives in their work: ① When soft tissue has deteriorated to the point that demographic characteristics of a body cannot be determined by visual inspection, they attempt to determine ancestry, sex, age, and living height from the skeleton. ② When there is evidence of traumatic injury (bullet holes, stab wounds, fractures) to human bone, forensic anthropologists attempt to identify the nature of the traumas and their causative agent pertaining to cause and manner of death.
    [Show full text]
  • 3-D Surface Anthropometry: Review of Technologies (L'hthropodtrie De Surface-En Trois Dimensions: Examen Des Technologies)
    I 1 n A L 1 W ADVISORY QROUP FOR AEROSPACE RE(KARCH & DEVELOPMENT 7 RUE ANCEUE, 92200 NEUIUY-SUR-SEINE, FRANCE 3-D Surface Anthropometry: Review of Technologies (l'hthropodtrie de surface-en trois dimensions: examen des technologies) . \ AGARD-AR-329 I I ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT 7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE AGARD ADVISORY REPORT 329 I- I. 3-D Surface Anthropometry: Review of Technologies (1'AnthropomCtrie de surface en trois dimensions: examen des technologies) Editors: K.M. Robinette (US), M.W. Vannier (US), M. Rioux (CA), P.R.M. Jones (UK) This Advisory Report was prepared by Working Group 20 of the Aerospace Medical Panel of AGARD. North Atlantic Treaty Organization Organisation du Traite de I'Atlantique Nord I The Mission of AGARD According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes: - Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community; - Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application); - Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture; - Improving the co-operation among member nations in aerospace research and development;, - Exchange of scientific and technical information; - Providing assistance to member nations for the purpose of increasing their scientific and technical potential; - Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field.
    [Show full text]
  • Insect Digestion
    INSECT DIGESTION Zoo 514 Dr. Reem Alajmi Insect digestive system The alimentary canal is concerned with digestion and absorption of food stuffs. Different parts of the gut are concerned with different aspects of these functions. In fluid feeding insects digestion begin before the food is ingested through the injection or regurgitation of enzymes on to the food . In general it occurs in the mid gut (most of the enzymes are produced). The enzymes break down the complex substances in the food into simple substances which can be absorbed and assimilated. Enzymes function optimally only within limited range of pH and temperature. Absorption is passive process in some cases , but in others active transport occurs. Absorption of water is important in terrestrial insects , rectum remove water from faeces. • Insects of different groups consume astonishing variety of foods, including watery xylem sap, vertebrate blood, dry wood, bacteria and algae and the internal tissues of other insects. • Types of mouth parts correlates with the diets of insect. Also gut structure and function affected by nutrient composition of the food eaten by insect. • Insects that take solid food typically have a wide, straight, short gut with strong musculature and obvious protection from abrasion (especially in the midgut, which has no cuticular lining). • These features are most obvious in solid-feeders with rapid throughput of food, as in many insects and plant-feeding caterpillars In contrast, insects feeding on blood, sap or nectar usually have long, narrow, convoluted guts to allow maximal contact with the liquid food; here, protection from abrasion is unnecessary. The most obvious gut specialization of liquid-feeders is a mechanism for removing excess water to concentrate nutrient substances prior to digestion, as seen in hemipterans.
    [Show full text]
  • DIGESTIVE SYSTEM Generalized Insect Alimentary Tract the Digestive System Is Just a Tube Within a Surrounding Tube Called the Body
    DIGESTIVE SYSTEM Generalized insect alimentary tract The digestive system is just a tube within a surrounding tube called the body. It starts with a mouth and ends with the anus. What goes on in between depends on the insect, its life stage and what it eats. The origin of the digestive tract. At the anterior pole of the embryo an indentation forms that will be the foregut or stomodeum. At the other end a similar thing occurs and the proctodeum or hindgut is formed. Both are lined by cuticle. They both are of ectodermal origin while the midgut is of mesodermal origin and is also called the mesenteron. This different origin of the midgut from the endoderm and not the ecotoderm probably explains why it is not lined with cuticle Anterior midgut invagination. In the bottom photo note the invagination starting forming the ventral furrow lumen (VF) MIDGUT FORMATION IN THE EMBRYO PMG in the above embryo shows the posterior midgut invagination cup where the posterior invagination shown in the drawing on the right will take place. Photo of Drosophila embryo. Hindgut invagination DIGESTIVE SYSTEM The digestive tract not only aids in obtaining, processing and digesting food molecules - It is the largest endocrine tissue in both humans and insects. The digestive system is involved in: 1. Obtaining food 2. Mechanically breaking it down into smaller particles that facilitate digestive enzymes acting on them 3. Enzymatic breakdown of larger food molecules into molecules that can pass through the digestive tract (midgut) and enter the hemolymph 4. Produces molecules or MESSENGERS (eg.
    [Show full text]
  • GRAS 45BC KEMAR Head & Torso with Mouth Simulator, Non-Configured
    GRAS 45BC KEMAR Head & Torso with Mouth Simulator, Non-configured Connection: 0 V/CCP or 200 V/LEMO The 45BC KEMAR head & torso with mouth simulator is Channel(s): 2 an acoustic research tool with built-in ear and mouth ANSI: S3.36, S3.25 simulators that simulates the changes that occur to IEC: 60318-7 soundwaves as they pass a human head and torso. Its Special feature: Built-in mouth simulator and equivalent without mouth is GRAS 45BB KEMAR Head & power amplifier Torso, non-configured. GRAS Sound & Vibration Skovlytoften 33, 2840 Holte, Denmark www.grasacoustics.com GRAS 45BC KEMAR Head & Torso with Page: 2 Technology Mouth Simulator, Non-configured Introduction and in the far-field. Because of its anthropometric shape, it does so more realistically than any other The KEMAR head and torso simulator was manikin. KEMAR is the only manikin with a introduced by Knowles in 1972 and quickly became changeable ear-to-shoulder ratio simulating both the industry standard for hearing-aid manufacturers male and female median values. and research audiologists (visit KEMAR.us to read the full story). The GRAS KEMAR has the same Mouth Simulator dimensions and acoustical properties as the original The built-in mouth simulator simulates the sound KEMAR from 1972 and is 100% backward compatible. field around the human head at close quarters and When fitted with pinna simulators, ear canal the far-field. It is based on ITU-T Rec. P.58. At the extension, and Ear Simulator, according to IEC mouth reference point (MRP) – 25 mm from the lip 60318-4 or low-noise, KEMAR closely mimics the plane – the mouth simulator can be equalized to acoustic properties of the human ear.
    [Show full text]
  • The Heterogeneity Ofsmall Sculptures on Easter Island Before 1886
    The Heterogeneity ofSmall Sculptures on Easter Island before 1886 Received 4 October 1979 THOR HEYERDAHL ASTER ISLAND ART has a unique reputation for its sophisticated originality but also for its repetitious monotony. An ethnologist, art student, or dealer is expected to E recognize any sculpture in stone or wood from Easter Island and identify it by its proper Rapanui name as a moai kavakava, moai papa, rei miro, tahonga, ua, and so on. It therefore came as a great surprise to the scientific world when Lavachery (1939), during the Franco-Belgian Expedition to Easter Island in 1934, discovered such a quantity ofhet­ erogeneous petroglyphs all over the barren landscape that he, as the only archaeologist of the expedition, devoted all his fieldwork to the study and registration ofthis so far totally overlooked aspect ofEaster Island art. It follows that Lavachery would be among the first to come to Oslo to inspect the nearly 1000 stone carvings obtained from various families on the island by the Norwegian Ar­ chaeological Expedition shortly before departure in 1956. How many of them were an­ cient, and, if new, what did they reflect oflocal motifs and old traditions? Perhaps Lava­ chery was better prepared than anyone else for this new explosion ofEaster Island art. His findings two decades earlier of an exuberance of art motifs nonexistent on the island ex­ cept where they were carved on immovable rock was to him a forewarning that the secretive and superstitious population might have carried into security all such portable objects as would have been stolen or destroyed ifleft about.
    [Show full text]