Embryology and Teratology in the Curricula of Healthcare Courses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 Embryology and Development
BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation. -
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Notch Signaling Regulates the Differentiation of Neural Crest From
ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 2083–2094 doi:10.1242/jcs.145755 RESEARCH ARTICLE Notch signaling regulates the differentiation of neural crest from human pluripotent stem cells Parinya Noisa1,2, Carina Lund2, Kartiek Kanduri3, Riikka Lund3, Harri La¨hdesma¨ki3, Riitta Lahesmaa3, Karolina Lundin2, Hataiwan Chokechuwattanalert2, Timo Otonkoski4,5, Timo Tuuri5,6,* and Taneli Raivio2,4,*,` ABSTRACT Kokta et al., 2013). Neural crest cells originate from neuroectoderm at the border between the neural plate and the Neural crest cells are specified at the border between the neural epiderm (Meulemans and Bronner-Fraser, 2004), and they are plate and the epiderm. They are capable of differentiating into marked by the expression of genes that are specific for the neural- various somatic cell types, including craniofacial and peripheral plate border, such as DLX5, MSX1, MSX2 and ZIC1. Later, during nerve tissues. Notch signaling plays important roles during the neural-tube folding process, neural crest cells remain within neurogenesis; however, its function during human neural crest the neural folds and subsequently localize inside the dorsal development is poorly understood. Here, we generated self- portion of the neural tube. These premigratory neural crest cells renewing premigratory neural-crest-like cells (pNCCs) from human express specifier genes, such as SNAIL (also known as SNAI1), pluripotent stem cells (hPSCs) and investigated the roles of Notch SLUG (also known as SNAI2), SOX10 and TWIST1 (LaBonne and signaling during neural crest differentiation. pNCCs expressed Bronner-Fraser, 2000; Mancilla and Mayor, 1996). Following the various neural-crest-specifier genes, including SLUG (also known formation of the neural tube, premigratory neural crest cells as SNAI2), SOX10 and TWIST1, and were able to differentiate into undergo an epithelial-to-mesenchymal transition (EMT) and most neural crest derivatives. -
The Migration of Neural Crest Cells and the Growth of Motor Axons Through the Rostral Half of the Chick Somite
/. Embryol. exp. Morph. 90, 437-455 (1985) 437 Printed in Great Britain © The Company of Biologists Limited 1985 The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite M. RICKMANN, J. W. FAWCETT The Salk Institute and The Clayton Foundation for Research, California division, P.O. Box 85800, San Diego, CA 92138, U.S.A. AND R. J. KEYNES Department of Anatomy, University of Cambridge, Downing St, Cambridge, CB2 3DY, U.K. SUMMARY We have studied the pathway of migration of neural crest cells through the somites of the developing chick embryo, using the monoclonal antibodies NC-1 and HNK-1 to stain them. Crest cells, as they migrate ventrally from the dorsal aspect of the neural tube, pass through the lateral part of the sclerotome, but only through that part of the sclerotome which lies in the rostral half of each somite. This migration pathway is almost identical to the path which pre- sumptive motor axons take when they grow out from the neural tube shortly after the onset of neural crest migration. In order to see whether the ventral root axons are guided along this pathway by neural crest cells, we surgically excised the neural crest from a series of embryos, and examined the pattern of axon outgrowth approximately 24 h later. In somites which contained no neural crest cells, ventral root axons were still found only in the rostral half of the somite, although axonal growth was slightly delayed. These axons were surrounded by sheath cells, which had presumably migrated out of the neural tube, to a point about 50 jan proximal to the growth cones. -
Works Neuroembryology
Swarthmore College Works Biology Faculty Works Biology 1-1-2017 Neuroembryology D. Darnell Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation D. Darnell and Scott F. Gilbert. (2017). "Neuroembryology". Wiley Interdisciplinary Reviews: Developmental Biology. Volume 6, Issue 1. DOI: 10.1002/wdev.215 https://works.swarthmore.edu/fac-biology/493 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Wiley Interdiscip Manuscript Author Rev Dev Manuscript Author Biol. Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Wiley Interdiscip Rev Dev Biol. 2017 January ; 6(1): . doi:10.1002/wdev.215. Neuroembryology Diana Darnell1 and Scott F. Gilbert2 1University of Arizona College of Medicine 2Swarthmore College and University of Helsinki Abstract How is it that some cells become neurons? And how is it that neurons become organized in the spinal cord and brain to allow us to walk and talk, to see, recall events in our lives, feel pain, keep our balance, and think? The cells that are specified to form the brain and spinal cord are originally located on the outside surface of the embryo. They loop inward to form the neural tube in a process called neurulation. -
Comparing the Differentiation Potential of Brachyury+ Mesodermal Cells
bioRxiv preprint doi: https://doi.org/10.1101/239913; this version posted December 26, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 of 44 + 1 Comparing the differentiation potential of Brachyury mesodermal 2 cells generated from 3-D and 2-D culture systems 3 Jing Zhou 1, Antonius Plagge 1 and Patricia Murray 1,* 4 1 Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; E-mails: 5 [email protected] (J.Z.); [email protected] (A.P.); [email protected] 6 (P.M.) 7 * Correspondence: [email protected] 8 Abstract 9 Mesodermal populations can be generated in vitro from mouse embryonic stem cells (mESCs) using 10 three-dimensional (3-D) aggregates called embryoid bodies or two-dimensional (2-D) monolayer 11 culture systems. Here, we investigated whether Brachyury-expressing mesodermal cells generated 12 using 3-D or 2-D culture systems are equivalent, or instead, have different properties. Using a 13 Brachyury-GFP/E2-Crimson reporter mESC line, we isolated Brachyury-GFP+ mesoderm cells using 14 flow-activated cell sorting and compared their gene expression profiles and ex vivo differentiation 15 patterns. Quantitative RT-PCR analysis showed significant up-regulation of Cdx2, Foxf1 and Hoxb1 in 16 the Brachyury-GFP+ cells isolated from the 3-D system compared with those isolated from the 2-D 17 system. -
Gastrulation
Embryology of the spine and spinal cord Andrea Rossi, MD Neuroradiology Unit Istituto Giannina Gaslini Hospital Genoa, Italy [email protected] LEARNING OBJECTIVES: LEARNING OBJECTIVES: 1) To understand the basics of spinal 1) To understand the basics of spinal cord development cord development 2) To understand the general rules of the 2) To understand the general rules of the development of the spine development of the spine 3) To understand the peculiar variations 3) To understand the peculiar variations to the normal spine plan that occur at to the normal spine plan that occur at the CVJ the CVJ Summary of week 1 Week 2-3 GASTRULATION "It is not birth, marriage, or death, but gastrulation, which is truly the most important time in your life." Lewis Wolpert (1986) Gastrulation Conversion of the embryonic disk from a bilaminar to a trilaminar arrangement and establishment of the notochord The three primary germ layers are established The basic body plan is established, including the physical construction of the rudimentary primary body axes As a result of the movements of gastrulation, cells are brought into new positions, allowing them to interact with cells that were initially not near them. This paves the way for inductive interactions, which are the hallmark of neurulation and organogenesis Day 16 H E Day 15 Dorsal view of a 0.4 mm embryo BILAMINAR DISK CRANIAL Epiblast faces the amniotic sac node Hypoblast Primitive pit (primitive endoderm) faces the yolk sac Primitive streak CAUDAL Prospective notochordal cells Dias Dias During -
The Drosophila Eye
Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye Helen McNeill, 1 Chung-Hui Yang, 1 Michael Brodsky, 2 Josette Ungos, ~ and Michael A. Simon ~'3 1Department of Biological Sciences, Stanford University, Stanford, California 94305 USA; ZDepartment of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA The Drosophila eye is composed of dorsal and ventral mirror-image fields of opposite chiral forms of ommatidia. The boundary between these fields is known as the equator. We describe a novel gene, mirror (mrr), which is expressed in the dorsal half of the eye and plays a key role in forming the equator. Ectopic equators can be generated by juxtaposing mrr expressing and nonexpressing cells, and the path of the normal equator can be altered by changing the domain of mrr expression. These observations suggest that mrr is a key component in defining the dorsal-ventral boundary of tissue polarity in the eye. In addition, loss of mrr function leads to embryonic lethality and segmental defects, and its expression pattern suggests that it may also act to define segmental borders. Mirror is a member of the class of homeoproteins defined by the human proto-oncogene PBX1. mrr is similar to the Iroquois genes ara and caup and is located adjacent to them in this recently described homeotic cluster. [Key Words: Drosophila; eye development; polarity; compartment; border] Received January 14, 1997; revised version accepted March 4, 1997. -
Introduction to Plant Embryology Dr
Introduction to Plant embryology Dr. Pallavi J.N.L. College Khagaul Plant Embryology • Embryology is the study of structure and development of embryo, including the structure and development of male and female reproductive organs, fertilisation and similar other processes. • Father of Indian Plant empryology- Panchanan Maheshwari • Plant embryogenesis is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. • The zygote produced after fertilization, must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike animal embryogenesis, plant embryogenesis results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. • The Phanerogams (the flowering-plants) are also called spermatophytes (the seed bearing plants). These plants propagate mainly through seeds. The seed is a structure in which the embryo is enclosed. Adjacent to the embryo, foods are stored either inside the endosperm (albuminous) or in cotyledon (exalbuminous) for future use. Life cycle of flowering plants • Alternation between a dominant sporophytic generation and a highly reduced gametophytic generation. Dominant sporophytic generation is diploid and reduced gaThe normal sexual cycle (amphimixing) involves two important processes: • (i) Meiosis and • (ii) Fertilization • In meiosis also known as reduction division, a diploid sporophytic cell spore mother cell) • gets converted into four haploid gametophytic cells. (“2n” number of chromosomes becomes half i.e. “n” number of chromosome) gametophytic generation is haploid. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Embryology BOLK’S COMPANIONS FOR‑THE STUDY of MEDICINE
Embryology BOLK’S COMPANIONS FOR‑THE STUDY OF MEDICINE EMBRYOLOGY Early development from a phenomenological point of view Guus van der Bie MD We would be interested to hear your opinion about this publication. You can let us know at http:// www.kingfishergroup.nl/ questionnaire/ About the Louis Bolk Institute The Louis Bolk Institute has conducted scientific research to further the development of organic and sustainable agriculture, nutrition, and health care since 1976. Its basic tenet is that nature is the source of knowledge about life. The Institute plays a pioneering role in its field through national and international collaboration by using experiential knowledge and by considering data as part of a greater whole. Through its groundbreaking research, the Institute seeks to contribute to a healthy future for people, animals, and the environment. For the Companions the Institute works together with the Kingfisher Foundation. Publication number: GVO 01 ISBN 90-74021-29-8 Price 10 € (excl. postage) KvK 41197208 Triodos Bank 212185764 IBAN: NL77 TRIO 0212185764 BIC code/Swift code: TRIONL 2U For credit card payment visit our website at www.louisbolk.nl/companions For further information: Louis Bolk Institute Hoofdstraat 24 NL 3972 LA Driebergen, Netherlands Tel: (++31) (0) 343 - 523860 Fax: (++31) (0) 343 - 515611 www.louisbolk.nl [email protected] Colofon: © Guus van der Bie MD, 2001, reprint 2011 Translation: Christa van Tellingen and Sherry Wildfeuer Design: Fingerprint.nl Cover painting: Leonardo da Vinci BOLK FOR THE STUDY OF MEDICINE Embryology ’S COMPANIONS Early Development from a Phenomenological Point of view Guus van der Bie MD About the author Guus van der Bie MD (1945) worked from 1967 to Education, a project of the Louis Bolk Instituut to 1976 as a lecturer at the Department of Medical produce a complement to the current biomedical Anatomy and Embryology at Utrecht State scientific approach of the human being. -
Semaphorin3a/Neuropilin-1 Signaling Acts As a Molecular Switch Regulating Neural Crest Migration During Cornea Development
Developmental Biology 336 (2009) 257–265 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development Peter Y. Lwigale a,⁎, Marianne Bronner-Fraser b a Department of Biochemistry and Cell Biology, MS 140, Rice University, P.O. Box 1892, Houston, TX 77251, USA b Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA article info abstract Article history: Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues Received for publication 2 April 2009 including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over Revised 11 September 2009 the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal Accepted 6 October 2009 differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that Available online 13 October 2009 semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down- Keywords: Semaphorin3A regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives Neuropilin-1 rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the Neural crest periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that Cornea inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that Lens phenocopies lens ablation.